Skip to main content Accessibility help
×
Home

The width of the solitary wave in dusty plasma

  • Behrooz Malekolkalami (a1) and Amjad Alipanah (a1)

Abstract

The Sagdeev potential method is employed to compute the width of the ion-acoustic solitary wave propagated in a dusty plasma containing three components (dust–ion–electron). The results indicate that the width is a continuous function over the allowable ranges of plasma parameters. The complexity of the resulting equations is an obstacle to the expression of the width function in an explicit form in terms of the parameters. Thus, computer algebra is needed to plot the graph of the width function versus the parameters, which helps us to understand the width changes as the parameters change.

Copyright

Corresponding author

Email address for correspondence: behruz.kord@gmail.com

References

Hide All
Adhikary, N. C., Deka, M. K. & Bailung, H. 2009 Observation of rarefactive ion acoustic solitary waves in dusty plasma containing negative ions. Phys. Plasmas 16, 063701.
Barkan, A., D’Angelo, N. & Merlino, R. L. 1994 Charging of dust grains in a plasma. Phys. Rev. Lett. 73, 3093.
Bharuthram, R. & Shukla, P. K. 1992 Large amplitude ion-acoustic solitons in a dusty plasma. Planet. Space Sci. 40, 973.
Fortov, V. E. & Morfill, G. E. 2010 Complex and Dusty Plasmas. CRC Press.
Goertz, C. K. 1989 Dusty plasmas in the solar system. Rev. Geophys. 27, 271.
Grün, E., Morfill, G. E. & Mendis, D. A. 1984 Planetary Rings. University of Arizona Press.
Hayashi, Y. & Tachibana, K. 1994 Observation of coulomb-crystal formation from carbon particles grown in a methane plasma. Japan. J. Appl. Phys. 33 (Part 2), L804.
Horanyi, M. & Mendis, D. A. 1986 The effects of electrostatic charging on the dust distribution at Halley’s comet. Astrophys. J. 307, 800.
Khanna, R., Brinks, E. & Mould, J. 2015 Astrophysics space Science introduces article numbering. Astrophys. Space Sci. 357, 1.
Kim, H. 1977 Approximate theory of large-amplitude wave propagation. J. Plasma Phys. 17, 519.
Kumar, R. & Malik, H. K. 2011 Nonlinear solitary structures in an inhomogeneous magnetized plasma having trapped electrons and dust particles with different polarity. J. Phys. Soc. Japan. 80, 044502.
Kumar, R., Malik, H. K. & Singh, K. 2012 Effect of dust charging and trapped electrons on nonlinear solitary structures in an inhomogeneous magnetized plasma. Phys. Plasmas 19, 012114.
Leontovich, M. A. 1966 Reviews of Plasma Physics. Consultants Bureau.
Luo, Q. Z., D’Angelo, N. & Merlino, R. L. 2000 Ion acoustic shock formation in a converging magnetic field geometry. Phys. Plasmas 7, 2370.
Luo, Q. Z. & Merlino, R. L. 1999 Experimental study of shock formation in a dusty plasma. Phys. Plasmas 6, 3455.
Malakolkalami, B. & Mohammadi, T. 2012 Propagation of solitary waves and shock wavelength in the pair plasma. J. Plasma Phys. 78, 05.
Malakolkalami, B. & Mohammadi, T. 2014 Some aspects of the shock wave in pair plasma. Open Plasma Phys. J. 7, 199.
Malik, H. K. & Kawata, S. 2007 Soliton propagation in an inhomogeneous plasma at critical density of negative ions: effects of gyratory and thermal motions of ions. Phys. Plasmas 14, 102110.
Malik, H. K. & Malik, R. 2014 Unperturbed state and solitary structures in an electron–positron plasma having dust impurity and density inhomogeneity. J. Plasma Phys. 80, 629.
Malik, H. K. & Stroth, U. 2008 Nonlinear solitary waves (solitons) in inhomogeneous magnetized warm plasma with negative ions and nonisothermal electrons. Plasma Sources Sci. Technol. 17, 035005.
Malik, H. K., Tomar, R. & Dahiya, R. P. 2014 Conditions for reflection and transmission of an ion acoustic soliton in a dusty plasma with variable charge dust. Phys. Plasmas 21, 072112.
Mendis, D. A. & Rosenberg, M. 1992 Some aspects of dust–plasma interactions in the cosmic environment. IEEE Trans. Plasma Sci. 20, 929.
Nakamura, Y. 1987 Observation of large-amplitude ion acoustic solitary waves in a plasma. J. Plasma Phys. 38, 461.
Nakamura, Y., Bailung, H. & Shukla, P. K. 1999 Observation of ion-acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83, 1602.
Nakamura, Y., Yokota, T. & Shukla, P. K. 2000 Frontiers in Dusty Plasmas. Elsevier.
Northrop, T. G. 1992 Dusty plasmas. Phys. Scr. 45, 475.
Peratt, A. L. 2015 Physics of the Plasma Universe. Springer.
Popel, S. I., Yu, M. Y. & Tsytovich, V. N. 1996 Shock waves in plasmas containing variable charge impurities. Phys. Plasmas 3, 4313.
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1990 Dust acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543.
Selwyn, G. S. 1993 A phenomenlogical study of particulates in plasma tools and processes. Japan. J. Appl. Phys. 32 (Part 1), 3068.
Sheridan, T. E. 1998 Some properties of large-amplitude negative-potential solitary waves in a three-component plasma. J. Plasma Phys. 60, 17.
Singh, D. K. & Malik, H. K. 2008 Solitons in inhomogeneous magnetized negative ion containing plasma with two temperature non-isothermal electrons. IEEE Trans. Plasma Sci. 36, 462.
Shukla, P. K. & Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. IoP.
Thomas, H., Morfill, G. E. & Dammel, V. 1994 Plasma crystal: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652.
Turski, A. J., Atamaniuk, B. & Turska, E. 2003 Non-Linear Phenomena in Dusty Plasmas, Invited talk at the International Symposium Plasma, Warsaw, Poland, 9–12 September. arXiv:physics/0312073.
Turski, A. J., Atamaniuk, B. & Uchowski, K. 1999 Dusty plasma solitons in Vlasov plasmas. Arch. Mech. 51, 167.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

The width of the solitary wave in dusty plasma

  • Behrooz Malekolkalami (a1) and Amjad Alipanah (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.