Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-19T23:02:03.707Z Has data issue: false hasContentIssue false

Whistler radiation in plasmas with cylindrical magnetic field irregularities

Published online by Cambridge University Press:  18 September 2009

C. KRAFFT
Affiliation:
Laboratoire de Physique des Plasmas, Ecole Polytechnique and Paris South University, 91128 Palaiseau Cedex, France (catherine.krafft@lpp.polytechnique.fr)
T. M. ZABORONKOVA
Affiliation:
Department of Applied Physics, Technical University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia

Abstract

The radiation of whistler waves by linear dipole sources immersed in magnetoplasmas with cylindrical magnetic field inhomogeneities are studied. Two types of irregularities are investigated: magnetic field enhancements and depletions. A theoretical analysis is developed for comparatively weak local perturbations of the ambient magnetic field. Results are provided by numerical calculations performed for physical conditions typical of laboratory experiments involving artificially created magnetic field irregularities. It is shown that plasma regions with locally enhanced (depleted) magnetic field intensities can increase (decrease) the amplitudes of whistler waves radiated by dipole sources, regardless of their orientation with respect to the ambient magnetic field. Results are relevant to space and laboratory experiments on very low-frequency wave radiation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Wang, T. N. C. and Bell, T. F. 1972 IEEE Trans. Ant. Prop. 20 (3), 394.CrossRefGoogle Scholar
[2]Ohnuki, S., Sawaya, K. and Adachi, S. 1986 IEEE Trans. Ant. Prop. 34 (8), 1024.CrossRefGoogle Scholar
[3]Kondrat'ev, G. I., Kudrin, A. V. and Zaboronkova, T. M. 1992 Radio Sci. 27 (2), 315.CrossRefGoogle Scholar
[4]Mareev, E. A. and Chugunov, Yu. V. 1991 Antennas in Plasmas. Nizhny Novgorod, Russia: Institute of Applied Physics.Google Scholar
[5]Alpert, Y. 1980 J. Atmos. Terr. Phys. 42, 1.CrossRefGoogle Scholar
[6]Stenzel, R. L. 1976 Radio Sci. 11, 1045.CrossRefGoogle Scholar
[7]Chen, F. F. and Boswell, R. W. 1997 IEEE Trans. Plasma Sci. 25 (6), 1245.CrossRefGoogle Scholar
[8]Derra, G. and Piel, A. 1983 Plasma Phys. 25, 435.CrossRefGoogle Scholar
[9]Sazhin, S. S., Hayakawa, M. and Bullough, K. 1992 Ann. Geophys. 10 (5), 293.Google Scholar
[10]Starodubtsev, M. V., Kostrov, A. V., Nazarov, V. V. and Permitin, G. V. 2005 Phys. Rev. E 72, 026401.CrossRefGoogle Scholar
[11]Bell, T. F. and Ngo, H. D. 1990 J. Geophys. Res. 95, 149.CrossRefGoogle Scholar
[12]Cerisier, J. C. 1974 J. Atm. Terr. Phys. 36, 1443.CrossRefGoogle Scholar
[13]Helliwell, R. A. 1965 Whistlers and Related Ionospheric Phenomena. Stanford, CA: Stanford University Press.Google Scholar
[14]Strangeways, H. J. 1982 J. Atmos. Terr. Phys. 44 (10), 901.CrossRefGoogle Scholar
[15]Calvert, W. 1995 J. Geophys. Res. 100, 17491.CrossRefGoogle Scholar
[16]Lucek, E. A., Constantinescu, D., Goldstein, M. L., Pickett, J., Pinçon, J. L., Sahraoui, F., Treumann, R. A., and Walker, S. N. 2005 Space Sci. Rev., 95.Google Scholar
[17]Stenzel, R. L. and Urrutia, J. M. 2000 Phys. Plasmas 7, 4450.CrossRefGoogle Scholar
[18]Zaboronkova, T. M., Kostrov, A. V., Kudrin, A. V., Tikhonov, S. V., Tronin, A. V. and Shaykin, A. A. 1992 Sov. Phys. JETP 75 (4), 625.Google Scholar
[19]Kostrov, A. V., Kudrin, A. V., Kurina, L. E., Luchinin, G. A., Shaykin, A. A. and Zaboronkova, T. M. 2000 Phys. Scripta 62, 51.CrossRefGoogle Scholar
[20]Maggs, J. E., Morales, G. J. and Gekelman, W. 1997 Phys. Plasmas 4 (5), 1881.CrossRefGoogle Scholar
[21]Karpman, V. I. 1998 Phys. Plasmas 5, 156.CrossRefGoogle Scholar
[22]Kondrat'ev, G. I., Kudrin, A. V., and Zaboronkova, T. M. 1999 Electrodynamics of density ducts in magnetized plasmas. Amsterdam: Gordon and Beach.Google Scholar
[23]Kudrin, A. V., Lyakh, M. Y., Zaboronkova, T. M. and Krafft, C. 2002 Phys. Plasmas 9, 1401.CrossRefGoogle Scholar
[24]Zaboronkova, T. M. and Krafft, C. 2007 Phys. Plasmas 14, 062101.CrossRefGoogle Scholar
[25]Stenzel, R. L. and Urrutia, J. M. 1998 Phys. Rev. Lett. 81 (10), 2064.CrossRefGoogle Scholar
[26]Popel, S. I., Elsässer, K., Takeda, Y. and Inuzuka, H. 2003 Phys. Plasmas 10 (6), 2296.CrossRefGoogle Scholar
[27]Bud'ko, N. I. and Ryabov, B. S. 2008 Geomagn. Aeron. 48 (1), 1.CrossRefGoogle Scholar
[28]Shvets, G., Fisch, N. J. and Rax, J. M. 2002 Phys. Rev. E 65, 046403.CrossRefGoogle Scholar
[29]Gushchin, M. E., Korobkov, S. V., Kostrov, A. V., Strikovsky, A. V. and Zaboronkova, T. M. 2005 JETP Lett. 81 (5), 214.CrossRefGoogle Scholar
[30]Gushchin, M. E., Zaboronkova, T. M., Koldanov, V. A., Korobkov, S. V., Kostrov, A. V., Krafft, C. and Strikovsky, A. V. 2008 Phys. Plasmas 15, 023504.CrossRefGoogle Scholar
[31]Gushchin, M. E., Korobkov, S. V., Kostrov, A. V., Strikovsky, A. V., Zaboronkova, T. M. and Krafft, C. 2008 Phys. Plasmas 15, 053503.CrossRefGoogle Scholar
[32]Zaboronkova, T. M., Kostrov, A. V., Kudrin, A. V., Smirnov, A. I. and Shaikin, A. A. 1996 Radiophys. Quant. Electr. 39, 132.CrossRefGoogle Scholar