Skip to main content Accessibility help
×
Home

Waves in a warm pair plasma: a relativistically complete two-fluid analysis

  • Rony Keppens (a1) (a2) (a3), Hans Goedbloed (a4) and Jean-Baptiste Durrive (a5)

Abstract

We present an ideal two-fluid wave mode analysis for a pair plasma, extending an earlier study for cold conditions to the warm pair plasma case. Starting from the completely symmetrized means for writing the governing linearized equations in the pair fluid rest frame, we discuss the governing dispersion relation containing all six pairs of forward and backward propagating modes, which are conveniently labelled as S, A, F, M, O and X. These relate to the slow (S), Alfvén (A) and fast (F) magnetohydrodynamic waves, include a modified (M) electrostatic mode, as well as the electromagnetic O and X branches. In the dispersion relation, only two parameters appear, which define the pair plasma magnetization $E^{2}\in [0,\infty ]$ and the squared pair plasma sound speed  $v^{2}$ , measured in units of the light speed  $c$ . The description is valid also in the highly relativistic regime, where either a high magnetization and/or a relativistic temperature (hence sound speed) is reached. We recover the exact relativistic single-fluid magnetohydrodynamic expressions for the S, A and F families in the low wavenumber–frequency regime, which can be obtained for any choice of the equation of state. We argue that, as in a cold pair plasma, purely parallel or purely perpendicular propagation with respect to the magnetic field vector $\boldsymbol{B}$ is special, and near-parallel or near-perpendicular orientations demonstrate avoided crossings of branches at computable wavenumbers and frequencies. The complete six-mode phase and group diagram views are provided as well, visually demonstrating the intricate anisotropies in all wave modes, as well as their transformations. Analytic expressions for all six wave group speeds at both small and large wavenumbers complement the analysis.

Copyright

Corresponding author

Email address for correspondence: rony.keppens@kuleuven.be

References

Hide All
Arons, J. & Barnard, J. J. 1986 Wave propagation in pulsar magnetospheres – dispersion relations and normal modes of plasmas in superstrong magnetic fields. Astrophys. J. 302, 120137.
Bellan, P. M. 2012 Improved basis set for low frequency plasma waves. J. Geophys. Res. (Space Physics) 117, A12219.
Bittencourt, J. A. 2004 Fundamentals of Plasma Physics. Springer.
Boyd, T. J. M. & Sanderson, J. J. 2003 The Physics of Plasmas. Cambridge University Press.
Bret, A. & Narayan, R. 2018 Density jump as a function of magnetic field strength for parallel collisionless shocks in pair plasmas. J. Plasma Phys. 84 (6), 905840604.
Cally, P. S. 2006 Dispersion relations, rays and ray splitting in magnetohelioseismology. Phil. Trans. R. Soc. Lond. A 364 (1839), 333349.
Chen, F. F. 2016 Introduction to Plasma Physics and Controlled Fusion. Springer.
Claes, N. & Keppens, R. 2019 Thermal stability of magnetohydrodynamic modes in homogeneous plasmas. Astron. Astrophys. 624, A96.
Clemmow, P. C. & Mullaly, R. F. 1955 The dependence of the refractive index in magneto-ionic theory on the direction of the wave normal. In Physics of the Ionosphere, Rep. Phys. Soc. Conf., Cavendish Laboratory, p. 340. London Physical Society.
Damiano, P. A., Wright, A. N. & McKenzie, J. F. 2009 Properties of Hall magnetohydrodynamic waves modified by electron inertia and finite Larmor radius effects. Phys. Plasmas 16 (6), 062901.
Denisse, J. F. & Delcroix, J. L. 1961 Théorie des ondes dans les plasmas. Dunod. (Transl.: Plasma Waves, 1963, John Wiley).
Goedbloed, J. P., Keppens, R. & Poedts, S. 2010 Advanced Magnetohydrodynamics. Cambridge University Press.
Goedbloed, J. P., Keppens, R. & Poedts, S. 2019 Magnetohydrodynamics of Laboratory and Astrophysical Plasmas. Cambridge University Press.
Goedbloed, J. P. & Poedts, S. 2004 Principles of Magnetohydrodynamics. Cambridge University Press.
Gurnett, D. A. & Bhattacharjee, A. 2005 Introduction to Plasma Physics. Cambridge University Press.
Ishida, A., Cheng, C. Z. & Peng, Y.-K. M. 2005 Properties of low and medium frequency modes in two-fluid plasma. Phys. Plasmas 12 (5), 052113.
Keppens, R. & Goedbloed, H. 2019a A fresh look at waves in ion–electron plasmas. Front. Astron. Space Sci. 6, 11.
Keppens, R. & Goedbloed, H. 2019b Wave modes in a cold pair plasma: the complete phase and group diagram point of view. J. Plasma Phys. 85 (1), 175850101.
Keppens, R. & Meliani, Z. 2008 Linear wave propagation in relativistic magnetohydrodynamics. Phys. Plasmas 15 (10), 102103.
Kulsrud, R. M. 2005 Plasma Physics for Astrophysics, Princeton Series in Astrophysics. Princeton University Press.
Loureiro, N. F. & Boldyrev, S. 2018 Turbulence in magnetized pair plasmas. Astrophys. J. Lett. 866, L14.
Lyutikov, M. 1998 Waves in a one-dimensional magnetized relativistic pair plasma. Mon. Not. R. Astron. Soc. 293 (4), 447468.
Lyutikov, M. 1999 Beam instabilities in a magnetized pair plasma. J. Plasma Phys. 62, 6586.
Mathews, W. G. 1971 The hydromagnetic free expansion of a relativistic gas. Astrophys. J. 165, 147.
Mignone, A., Mattia, G. & Bodo, G. 2018 Linear wave propagation for resistive relativistic magnetohydrodynamics. Phys. Plasmas 25 (9), 092114.
Rafat, M. Z., Melrose, D. B. & Mastrano, A. 2019 Wave dispersion in pulsar plasma. Part 1. Plasma rest frame. J. Plasma Phys. 85, 905850305.
Sarri, G., Poder, K., Cole, J. M., Schumaker, W., di Piazza, A., Reville, B., Dzelzainis, T., Doria, D., Gizzi, L. A., Grittani, G. et al. 2015 Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nat. Commun. 6, 6747.
Stewart, G. A. & Laing, E. W. 1992 Wave propagation in equal-mass plasmas. J. Plasma Phys. 47, 295319.
Stix, T. H. 1992 Waves in Plasmas. American Institute of Physics.
Stringer, T. E. 1963 Low-frequency waves in an unbounded plasma. J. Nucl. Energy 5, 89107.
Synge, J. L. 1960 Relativity: The General Theory. North Holland.
Thorne, K. S. & Blandford, R. D. 2017 Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics. Princeton University Press.
Zenitani, S. 2018 Dissipation in relativistic pair-plasma reconnection: revisited. Plasma Phys. Control. Fusion 60 (1), 014028.
Zhao, J. 2015 Dispersion relations and polarizations of low-frequency waves in two-fluid plasmas. Phys. Plasmas 22 (4), 042115.
Zhao, J. 2017 Properties of Whistler waves in warm electron plasmas. Astrophys. J. 850, 13.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed