Skip to main content Accessibility help

Tempest in a glass tube: A helical vortex formation in a complex plasma

  • Yoshifumi Saitou (a1) and Osamu Ishihara (a2) (a3)


A collective behavior of dust particles in a complex plasma with a magnetic field (up to 4 kG) is investigated. Dust particles form a dust disk which is rotating in a horizontal plane pushed by ions rotating with the E × B drift as a trigger force. The thickness of the disk is determined by controlling the experimental conditions. The disk rotates in a horizontal plane and forms a two-dimensional thin structure when the pressure pAr is relatively high. The dust particles are ejected from near the disk center and form a rotation in the vertical plane and, hence, forms a helical vortex when the disk is thick for relatively low pAr. The reason the dust disk has the different thickness is due to the neutral pressure. Under a higher (lower) neutral gas pressure, the disk becomes two (three) dimensional due to the influence of the neutral drag force.


Corresponding author

Email address for correspondence:


Hide All
Carstensen, J., Greiner, F., Hou, L-J., Horst, H. & Piel, A. 2009 Phys. Plasmas 16, 013702.
Chung, T. H. 1999 J. Korean Phys. Soc. 34, 24.
Couëdel, L., Mikikian, M., Boufendi, L. & Samarian, A. A. 2006 Phys. Rev. E 74, 026403.
Einstein, A. 1926 Naturewissenschaften 14, 223.
Farokhi, B., Shahmansouri, M. & Shukla, P. K. 2009 Phys. Plasmas 16, 063703.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Ishihara, O. & Sato, N. 2001 IEEE Trans. Plasma Phys. 29, 179.
Karasev, V. Y., Dzlieva, E. S., Ivanov, A. Y. & Eikhvald, A. I. 2006 Phys. Rev. E 74, 066403.
Konopka, U., Samsonov, D., Ivlev, A. V., Goree, J., Steinberg, V. & Morfill, G. E. 2000 Phys. Rev. E 61, 1890.
Mamun, A. A. 1998 J. Plasma Phys. 59, 575.
Mikikian, M., Boufendi, L., Bouchoule, A., Thomas, H. M., Morfill, G. E., Nefedov, A. P., Fortov, V. E. & the PKE-Nevedov~team 2003 New J. Phys. 5, 19.
Molotkov, V. I., Nefedov, A. P., Torchinskii, V. M., Fortov, V. E. & Khrapak, A. G. 1999 J. Exp. Theor. Phys. 89, 477.
Morfill, G. E., Thomas, H. M., Konopka, U., Rothermel, H., Zuzic, M., Ivlev, A. & Goree, J. 1999 Phys. Rev. Lett. 83, 1598.
Nakamura, Y. & Ishihara, O. 2008 Rev. Sci. Instrum. 79, 033504.
Nedospasov, A. V. 2009 Phys. Rev. E 79, 036401.
Pilch, I., Reichstein, T. & Piel, A. 2008 Phys. Plasmas 15, 103706.
Reichstein, T., Pilch, I., Gross-Ahlert, R. & Piel, A. 2010 IEEE Trans. Plasma Sci. 38, 814.
Saitou, Y. & Ishihara, O. 2013 Phys. Rev. Lett. 118, 185003.
Saitou, Y., Samarian, A. A. & Ishihara, O. 2014 JPS Conf. Proc. 1, 015012,
Sato, N., Uchida, G., Kaneko, T., Shimizu, S. & Iizuka, S. 2001 Phys. Plasmas 8, 1786.
Thomas, E. Jr., Merlino, R. L. & Rosenberg, M. 2012 Plasma Phys. Control. Fusion 54, 124034.
Tsytovich, V. N., Sato, N. & Morfill, G. E. 2003 New J. Phys. 5, 43.
Uchida, G., Konopka, U. & Morfill, G. 2004 Phys. Rev. Lett. 93, 155002.
Yeo, L. Y., Friend, J. R. & Arifin, D. R. 2006 Appl. Phys. Lett. 89, 103516.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed