Skip to main content Accessibility help

Temperature measurement of a dust particle in a RF plasma GEC reference cell

  • Jie Kong (a1), Ke Qiao (a1), Lorin S. Matthews (a1) and Truell W. Hyde (a1)


The thermal motion of a dust particle levitated in a plasma chamber is similar to that described by Brownian motion in many ways. The primary difference between a dust particle in a plasma system and a free Brownian particle is that in addition to the random collisions between the dust particle and the neutral gas atoms, there are electric field fluctuations, dust charge fluctuations, and correlated motions from the unwanted continuous signals originating within the plasma system itself. This last contribution does not include random motion and is therefore separable from the random motion in a ‘normal’ temperature measurement. In this paper, we discuss how to separate random and coherent motions of a dust particle confined in a glass box in a Gaseous Electronic Conference (GEC) radio-frequency (RF) reference cell employing experimentally determined dust particle fluctuation data analysed using the mean square displacement technique.


Corresponding author

Email address for correspondence:


Hide All
Einstein, A. 1905 Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Ann. Phys. (Berlin) 322, 549560.
Epstein, P. S. 1924 On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23, 710733.
Farouki, R. T. & Hamaguchi, S. 1955 Thermodynamics of strongly-coupled Yukawa systems near the one-component-plasma limit. II. Molecular dynamics simulations. J. Chem. Phys. 101, 98859893.
Hyde, T. W., Kong, J. & Matthews, L. 2013 Helical structures in vertically aligned dust particle chains in a complex plasma. Phys. Rev. E 87, 053106.
Ichimaru, S. 1982 Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids. Rev. Mod. Phys. 54, 10171058.
Jung, H., Greiner, F., Asnaz, O. H., Carstensen, J. & Piel, A. 2015 Exploring the wake of a dust particle by a continuously approaching test grain. Phys. Plasmas 22, 053702.
Kheifets, S., Simha, A., Melin, K., Li, T. & Raizen, M. G. 2014 Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science 343, 14931496.
Kneller, G. R. 2015 Anomalous diffusion in biomolecular systems from the perspective of non-equilibrium statistical physics. Acta Phys. Polon. B 46, 11671199.
Kneller, G. R.2016 Stochastic dynamics and relaxation in molecular systems – Brownian dynamics and beyond.∼kneller/SOCRATES/lecture.pdf.
Kong, J., Qiao, K., Matthews, L. & Hyde, T. W. 2014 Interaction force in a vertical dust chain inside a glass box. Phys. Rev. E 90, 013107.
Kubo, R. 1966 The fluctuation–dissipation theorem. Rep. Prog. Phys. 29, 255283.
Kubo, R. 1986 Brownian motion and nonequilibrium statistical mechanics. Science 233, 330334.
Langevin, P. 1908 Sur la théorie du mouvement Brownien. C. R. Acad. Sci. Paris 146, 530533; translated version: Lemons, D. S. & Gythiel, A. 1997 Am. J. Phys. 65, 1079–1081.
Li, T., Kheifets, S., Medellin, D. & Raizen, M. G. 2010 Measurement of the instantaneous velocity of a Brownian particle. Science 328, 16731675.
Li, T. & Raizen, M. K. 2013 Brownian motion at short time scales. Ann. Phys. (Berlin) 525, 281295.
Melandso, F. 1997 Heating and phase transitions of dust–plasma crystals in a flowing plasma. Phys. Rev. E 55, 74957506.
Melzer, A., Homann, A. & Piel, A. 1996 Experimental investigation of the melting transition of the plasma crystal. Phys. Rev. E 53, 27572766.
Morfill, G. E. & Thomas, H. 1996 Plasma crystal. J. Vac. Sci. Technol. A 14, 490495.
Mukhopadhyay, A. K. & Goree, J. 2012 Two-particle distribution and correlation function for a 1D dusty plasma experiment. Phys. Rev. Lett. 109, 165003.
Mukhopadhyay, A. K. & Goree, J. 2013 Erratum: two-particle distribution and correlation function for a 1D dusty plasma experiment. Phys. Rev. Lett. 111, 139902.
Nosenko, V. & Goree, J. 2006 Laser method of heating monolayer dusty plasmas. Phys. Plasmas 13, 032106.
Otani, N. & Bhattacharjee, A. 1997 Debye shielding and particle correlations in strongly coupled dusty plasmas. Phys. Rev. Lett. 78, 14681471.
Pieper, J. B. & Goree, J. 1996 Dispersion of plasma dust acoustic waves in the strong-coupling regime. Phys. Rev. Lett. 77, 31373140.
Pusey, P. N. 2011 Brownian motion goes ballistic. Science 332, 802803.
Quinn, R. A. & Goree, J. 2000a Experimental investigation of particle heating in a strongly coupled dusty plasma. Phys. Plasmas 7, 39043911.
Quinn, R. A. & Goree, J. 2000b Single-particle Langevin model of particle temperature in dusty plasmas. Phys. Rev. E 61, 30333041.
Rasband, W.2016 National Institutes of Health, USA,
Schmidt, C. & Piel, A. 2015 Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath. Phys. Rev. E 92, 043106.
Thomas, H. & Morfill, G. E. 1996 Melting dynamics of a plasma crystal. Nature 379, 806809.
Thomas, H., Morfill, G. E., Demmel, V. & Goree, J. 1994 Plasma crystal: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652655.
Vaulina, O. S. 2004 Transport properties of nonideal systems with isotropic pair interactions between particles. Plasma Phys. Rep. 30, 652661.
Vaulina, O. S., Khrapak, S. A., Nefedov, A. P. & Petrov, O. F. 1999 Charge-fluctuation-induced heating of dust particles in a plasma. Phys. Rev. E 60, 59595964.
Vaulina, O. S., Samarian, A. A., James, B., Petrov, O. F. & Fortov, V. E. 2003 Analysis of macroparticle charging in the near-electrode layer of a high-frequency capacitive discharge. J. Expl Theor. Phys. 96, 10371044.
Vaulina, O. S., Vladimirov, S. V., Repin, A. Yu. & Goree, J. 2006 Effect of electrostatic plasma oscillations on the kinetic energy of a charged macroparticle. Phys. Plasmas 13, 012111.
Wang, M. C. & Uhlenbeck, G. E. 1945 On the theory of the Brownian motion II. Rev. Mod. Phys. 17, 323342.
Wannier, G. H. 1966 Statistical Physics. Wiley.
Wigner, E. 1938 Effects of the electron interaction on the energy levels of electrons. Trans. Faraday Soc. 34, 678685.
Williams, J. D. & Thomas, E. Jr. 2006 Initial measurement of the kinetic dust temperature of a weakly coupled dusty plasma. Phys. Plasmas 13, 063509.
Zhakhovski, V. V., Molotkov, V. I., Nefedov, A. P., Torchinski, V. M., Khrapak, A. G. & Fortov, V. E. 1997 Anomalous heating of a system of dust particles in a gas-discharge plasma. JETP Lett. 66, 419425.
Zwanzig, R. 2001 Nonequilibrium Statistical Mechanics. Oxford University Press.
MathJax is a JavaScript display engine for mathematics. For more information see



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed