Skip to main content Accessibility help
×
Home

Superdiffusive transport in laboratory and astrophysical plasmas

  • G. Zimbardo (a1), E. Amato (a2), A. Bovet (a3), F. Effenberger (a4) (a5), A. Fasoli (a3), H. Fichtner (a6), I. Furno (a3), K. Gustafson (a3), P. Ricci (a3) and S. Perri (a1)...

Abstract

In the last few years it has been demonstrated, both by data analysis and by numerical simulations, that the transport of energetic particles in the presence of magnetic turbulence can be superdiffusive rather than normal diffusive (Gaussian). The term ‘superdiffusive’ refers to the mean square displacement of particle positions growing superlinearly with time, as compared to the normal linear growth. The so-called anomalous transport, which in general comprises both subdiffusion and superdiffusion, has gained growing attention during the last two decades in many fields including laboratory plasma physics, and recently in astrophysics and space physics. Here we show a number of examples, both from laboratory and from astrophysical plasmas, where superdiffusive transport has been identified, with a focus on what could be the main influence of superdiffusion on fundamental processes like diffusive shock acceleration and heliospheric energetic particle propagation. For laboratory plasmas, superdiffusion appears to be due to the presence of electrostatic turbulence which creates long-range correlations and convoluted structures in perpendicular transport: this corresponds to a similar phenomenon in the propagation of solar energetic particles (SEPs) which leads to SEP dropouts. For the propagation of energetic particles accelerated at interplanetary shocks in the solar wind, parallel superdiffusion seems to be prevailing; this is based on a pitch-angle scattering process different from that envisaged by quasi-linear theory, and this emphasizes the importance of nonlinear interactions and trapping effects. In the case of supernova remnant shocks, parallel superdiffusion is possible at quasi-parallel shocks, as occurring in the interplanetary space, and perpendicular superdiffusion is possible at quasi-perpendicular shocks, as corresponding to Richardson diffusion: therefore, cosmic ray acceleration at supernova remnant shocks should be formulated in terms of superdiffusion. The possible relations among anomalous transport in laboratory, heliospheric, and astrophysical plasmas will be indicated.

Copyright

Corresponding author

Email address for correspondence: gaetano.zimbardo@fis.unical.it

References

Hide All
Abdo, A. A., Ackermann, M., Ajello, M., Baldini, L., Ballet, J., Barbiellini, G., Baring, M. G., Bastieri, D., Baughman, B. M., Bechtol, K. et al. , Fermi Collaboration 2010a Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT. Science 327, 1103.
Abdo, A. A., Ackermann, M., Ajello, M., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Baughman, B. M., Bechtol, K., Bellazzini, R. et al. , Fermi Collaboration 2010b Observation of supernova remnant IC 443 with the Fermi large area telescope. Astrophys. J. 712, 459.
Amato, E. 2014 The origin of galactic cosmic rays. Intl J. Mod. Phys. D 23, 1430013.
Amato, E. & Blasi, P. 2005 A general solution to non-linear particle acceleration at non-relativistic shock waves. Mon. Not. R. Astron. Soc. Lett. 364, L76L80.
Arthur, A. D. & le Roux, J. A. 2013 Particle acceleration at the heliospheric termination shock with a stochastic shock obliquity approach. Astrophys. J. Lett. 772, L26.
Balogh, A., Bykov, A., Lin, R. P., Raymond, J. & Scholer, M.(Eds) 2013 Particle Acceleration in Cosmic Plasmas, Space Science Series of ISSI. Springer.
Bell, A. R. 1978 The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147.
Blasi, P. 2013 The origin of galactic cosmic rays. Astron. Astrophys. Rev. 21, 70.
Blumen, A., Klafter, J. & Zumofen, G. 1990 A stochastic approach to enhanced diffusion: Lévy walks. Europhys. Lett. 13, 223229.
Bouchaud, J. P. & Georges, A. 1990 Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127293.
Bovet, A., Fasoli, A. & Furno, I. 2014a Time-resolved measurements of suprathermal ion transport induced by intermittent plasma blob filaments. Phys. Rev. Lett. 113, 225001.
Bovet, A., Fasoli, A., Ricci, P., Furno, I. & Gustafson, K. 2015 Nondiffusive transport regimes for suprathermal ions in turbulent plasmas. Phys. Rev. E 91, 041101(R).
Bovet, A., Furno, I., Fasoli, A., Gustafson, K. & Ricci, P. 2012 Investigation of fast ion transport in TORPEX. Nucl. Fusion 52, 094017.
Bovet, A., Furno, I., Fasoli, A., Gustafson, K. & Ricci, P. 2013 Three-dimensional measurements of non-diffusive fast ion transport in TORPEX. Plasma Phys. Control. Fusion 55, 124021.
Bovet, A., Gamarino, M., Furno, I., Ricci, P., Fasoli, A., Gustafson, K., Newman, D. E. & Sánchez, R. 2014b Transport equation describing fractional Lévy motion of suprathermal ions in TORPEX. Nucl. Fusion 54, 104009.
Burresi, M. et al. 2012 Weak localization of light in superdiffusive random systems. Phys. Rev. Lett. 108, 110604.
Bykov, A. M., Ellison, D. C. & Renaud, M. 2012 Magnetic fields in cosmic particle acceleration sources. Space Sci. Rev. 166, 71.
Carreras, B. A., Lynch, V. E. & Zaslavsky, G. M. 2001 Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas 8, 5096.
del-Castillo-Negrete, D., Carreras, B. A. & Lynch, V. E. 2004 Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 38543864.
Chukbar, K. V. 1995 Stochastic transport and fractional derivatives. Zh. Eksp. Teor. Fiz. 108, 1875.
Decker, R.-B., Krimigis, S. M., Roelof, E. C., Hill, M. E., Armstrong, T. P., Gloeckler, G., Hamilton, D. C. & Lanzerotti, L. J. 2008 Mediation of the solar wind termination shock by non-thermal ions. Nature 454, 6770.
Dendy, R. O., Chapman, S. C. & Paczuski, M. 2007 Fusion, space, and solar plasmas as complex systems. Plasma Phys. Control. Fusion 49, A95.
Dewhurst, J. M., Hnat, B. & Dendy, R. O. 2010 Finite Larmor radius effects on test particle transport in drift wave–zonal flow turbulence. Plasma Phys. Control. Fusion 52, 025004.
Drury, L. O’C. 1983 An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46, 9731027.
Duffy, P., Kirk, J.-G., Gallant, Y.-A. & Dendy, R. O. 1995 Anomalous transport and particle acceleration at shocks. Astron. Astrophys. 302, L21.
Effenberger, F. 2014 Energetic particle transport with stochastic differential equations: general methods and the extension to anomalous diffusion regimes. In 8th International Conference of Numerical Modeling of Space Plasma Flows (ASTRONUM 2013) (ed. Pogorelov, N.i V., Audit, E. & Zank, G. P.), ASP Conference Series, vol. 488, p. 201. Astronomical Society of the Pacific.
Fasoli, A., Avino, F., Bovet, A., Furno, I., Gustafson, K., Jolliet, S., Loizu, J., Malinverni, D., Ricci, P., Riva, F. et al. 2013 Basic investigations of electrostatic turbulence and its interaction with plasma and suprathermal ions in a simple magnetized toroidal plasma. Nucl. Fusion 53, 063013.
Florinski, V., Decker, R. B., le Roux, J. A. & Zank, G. P. 2009 An energetic-particle-mediated termination shock observed by Voyager 2. Geophys. Res. Lett. 36, L12101.
Furno, I., Spolaore, M., Theiler, C., Vianello, N., Cavazzana, R. & Fasoli, A. 2011 Direct two-dimensional measurements of the field-aligned current associated with plasma blobs. Phys. Rev. Lett. 106, 245001.
Gardiner, C. W. 2009 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer.
Geisel, T., Nierwetberg, J. & Zacherl, A. 1985 Accelerated diffusion in Josephson junctions and related chaotic systems. Phys. Rev. Lett. 54, 616619.
Giacalone, J. 2013 Cosmic-ray transport and interaction with shocks. Space Sci. Rev. 176, 73.
Giacalone, J., Jokipii, R. & Mazur, J. E. 2000 Small-scale gradients and large-scale diffusion of charged particles in the heliospheric magnetic field. Astrophys. J. Lett. 532, L75L78.
Giuliani, A., Cardillo, M., Tavani, M., Fukui, Y., Yoshiike, S., Torii, K., Dubner, G., Castelletti, G., Barbiellini, G., Bulgarelli, A. et al. , AGILE Collaboration 2011 Neutral pion emission from accelerated protons in the supernova remnant W44. Astrophys. J. Lett. 742, 30.
Green, D. A. 2009 A revised Galactic supernova remnant catalogue. Bull. Astron. Soc. India 37, 45.
Gustafson, K. & Ricci, P. 2012 Lévy walk description of suprathermal ion transport. Phys. Plasmas 19, 032304.
Gustafson, K., Ricci, P., Bovet, A., Furno, I. & Fasoli, A. 2012a Suprathermal ion transport in simple magnetized torus configurations. Phys. Plasmas 19, 062306.
Gustafson, K., Ricci, P., Furno, I. & Fasoli, A. 2012b Nondiffusive suprathermal ion transport in simple magnetized toroidal plasmas. Phys. Rev. Lett. 108, 035006.
Helder, E. A., Vink, J., Bykov, A. M., Ohira, Y., Raymond, J. C. & Terrier, R. 2012 Observational signatures of particle acceleration in supernova remnants. Space Sci. Rev. 173, 369431.
Isichenko, M. B. 1992 Percolation, statistical topography and transport in random media. Rev. Mod. Phys. 64, 961.
Kirk, J. G., Duffy, P. & Gallant, Y. A. 1996 Stochastic particle acceleration at shocks in the presence of braided magnetic fields. Astron. Astrophys. 314, 1010.
Klafter, J., Blumen, A. & Shlesinger, M. F. 1987 Stochastic pathway to anomalous diffusion. Phys. Rev. A 35, 30813085.
Klafter, J. & Sokolov, I. M. 2005 Anomalous diffusion spreads its wings. Phys. World (August 2005), 29.
Krommes, J. A., Oberman, C. & Kleva, R. B. 1983 Plasma transport in stochastic magnetic fields. Part 3. Kinetics of test particle diffusion. J. Plasma Phys. 30, 11.
Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H., Kasai, R. S., Kondo, J. & Fujiwara, T. 2005 Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351.
Lazarian, A. & Yan, H. 2014 Superdiffusion of cosmic rays: implications for cosmic ray acceleration. Astrophys. J. 784, 38.
Lee, M. A. & Fisk, L. A. 1982 Shock acceleration of energetic particles in the heliosphere. Space Sci. Rev. 32, 205.
Lee, M. A., Mewaldt, R. A. & Giacalone, J. 2012 Shock acceleration of ions in the heliosphere. Space Sci. Rev. 173, 247.
Litvinenko, Y. E. & Effenberger, F. 2014 Analytical solutions of a fractional diffusion–advection equation for solar cosmic-ray transport. Astrophys. J. 796, 125.
Longair, M. S. 1994 High Energy Astrophysics, 2nd edn., vol. 2, pp. 229251. Cambridge University Press.
Magdziarz, M. & Weron, A. 2007 Competition between subdiffusion and Lévy flights: a Monte Carlo approach. Phys. Rev. E 75 (5), 056702.
Mazur, J. E., Mason, G. M., Dwyer, J. R., Giacalone, J., Jokipii, J. R. & Stone, E. C. 2000 Interplanetary magnetic field line mixing deduced from impulsive solar flare particles. Astrophys. J. Lett. 532, L79L82.
Metzler, R. & Klafter, J. 2000 The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 177.
Metzler, R. & Klafter, J. 2004 Topical review: the restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, R161R208.
Mier, J. A., Sánchez, R., Garcia, L., Carreras, B. A. & Newman, D. E. 2008 Characterization of nondiffusive transport in plasma turbulence via a novel Lagrangian method. Phys Rev. Lett. 101, 165001,1–4.
Morlino, G., Amato, E., Blasi, P. & Caprioli, D. 2010 Spatial structure of X-ray filaments in SN 1006. Mon. Not. R. Astron. Soc. Lett. 405, L21L25.
Onić, D. 2013 On the supernova remnants with flat radio spectra. Astrophys. Space Sci. 346, 313.
Orlando, S., Bocchino, F., Reale, F., Peres, G. & Petruk, O. 2007 On the origin of asymmetries in bilateral supernova remnants. Astron. Astrophys. 470, 927.
Perri, S. & Balogh, A. 2010 Stationarity in solar wind flows. Astrophys. J. 714, 937943.
Perri, S., Yordanova, E., Carbone, V., Veltri, P., Sorriso-Valvo, L., Bruno, R. & Andre, M. 2009 Magnetic turbulence in space plasmas: scale-dependent effects of anisotropy. J. Geophys. Res. 114, A02102.
Perri, S. & Zimbardo, G. 2007 Evidence of superdiffusive transport of electrons accelerated at interplanetary shocks. Astrophys. J. Lett. 671, 177180.
Perri, S. & Zimbardo, G. 2008 Superdiffusive transport of electrons accelerated at corotating interaction regions. J. Geophys. Res. 113, A03107.
Perri, S. & Zimbardo, G. 2009a Ion and electron superdiffusive transport in the interplanetary space. Adv. Space Res. 44, 465470.
Perri, S. & Zimbardo, G. 2009b Ion superdiffusion at the solar wind termination shock. Astrophys. J. Lett. 693, L118L121.
Perri, S. & Zimbardo, G. 2012a Superdiffusive shock acceleration. Astrophys. J. 750, 87.
Perri, S. & Zimbardo, G. 2012b Magnetic variances and pitch-angle scattering times upstream of interplanetary shocks. Astrophys. J. 754, 8.
Perri, S., Zimbardo, G., Effenberger, F. & Fichtner, H. 2015 Parameter estimation of superdiffusive motion of energetic particles upstream of heliospheric shocks. Astron. Astrophys. 578, A2.
Perri, S., Zimbardo, G. & Greco, A. 2011 On the energization of protons interacting with 3-D time-dependent electromagnetic fields in the Earth’s magnetotail. J. Geophys. Res. 116, A05221.
Perrone, D., Dendy, R. O., Furno, I., Sanchez, R., Zimbardo, G., Bovet, A., Fasoli, A., Gustafson, K., Perri, S., Ricci, P. & Valentini, F. 2013 Nonclassical transport and particle–field coupling: from laboratory plasma to the solar wind. Space Sci. Rev. 178, 233270.
Pommois, P., Zimbardo, G. & Veltri, P. 2007 Anomalous, non-Gaussian transport of charged particles in anisotropic magnetic turbulence. Phys. Plasmas 14, 012311,1–11.
Ragot, B. R. & Kirk, J. G. 1997 Anomalous transport of cosmic ray electrons. Astron. Astrophys. 327, 432.
Rechester, A. B. & Rosenbluth, M. N. 1978 Electron heat transport in a Tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40, 3841.
Reynolds, S. P. 2008 Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89.
Reynolds, S. P., Gaensler, B. M. & Bocchino, F. 2012 Magnetic fields in supernova remnants and pulsar-wind nebulae. Space Sci. Rev. 166, 231261.
Ricci, P., Theiler, C., Fasoli, A., Furno, I., Gustafson, K., Iraji, D. & Loizu, J. 2011 Methodology for turbulence code validation: quantification of simulation–experiment agreement and application to the TORPEX experiment. Phys. Plasmas 18, 032109.
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance–neighbour graph. Proc. R. Soc. Lond. A 110, 709.
Richardson, J., Kasper, J. C., Wang, C., Belcher, J. W. & Lazarus, A. J. 2008 Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454, 63.
Ritchie, K., Shan, X. Y., Kondo, J., Iwasawa, K., Fujiwara, T. & Kusumi, A. 2005 Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys. J. 88, 22662277.
Saichev, A. I. & Zaslavsky, G. M. 1997 Fractional kinetic equations: solutions and applications. Chaos 7, 753764.
Samko, S. S. G., Kilbas, A. A. A. & Marichev, O. O. I. 1993 Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach.
Sanchez, R., Newman, D. E., Leboeuf, J.-N., Decyk, V. K. & Carreras, B. A. 2008 Nature of transport across sheared zonal flows in electrostatic ion-temperature-gradient gyrokinetic plasma turbulence. Phys. Rev. Lett. 101, 205002.
Shalchi, A. A. 2010 Unified particle diffusion theory for cross-field scattering: subdiffusion, recovery of diffusion, and diffusion in three-dimensional turbulence. Astrophys. J. 720, L127L130.
Shalchi, A. & Kourakis, I. 2007 A new theory for perpendicular transport of cosmic rays. Astron. Astrophys. 470, 405409.
Shklyar, D. R. & Zimbardo, G. 2014 Particle dynamics in the field of two waves in a magnetoplasma. Plasma Phys. Control. Fusion 56, 095002.
Shlesinger, M. F., West, B. J. & Klafter, J. 1987 Levy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100.
Stern, R., Effenberger, F., Fichtner, H. & Schäfer, T. 2014 The space-fractional diffusion–advection equation: analytical solutions and critical assessment of numerical solutions. Fract. Calc. Appl. Anal. 17 (1), 171190.
Sugiyama, T. & Shiota, D. 2011 Sign for super-diffusive transport of energetic ions associated with a coronal-mass-ejection-driven interplanetary shock. Astrophys. J. 731, L34L37.
Tautz, R. C. 2010 Simulation results on the influence of magneto-hydrodynamic waves on cosmic ray particles. Plasma Phys. Control. Fusion 52, 045016.
Tavani, M., Giuliani, A., Chen, A. W., Argan, A., Barbiellini, G., Bulgarelli, A., Caraveo, P., Cattaneo, P. W., Cocco, V., Contessi, T. et al. , AGILE Collaboration 2010 Direct evidence for hadronic cosmic-ray acceleration in the supernova remnant IC 443. Astrophys. J. Lett. 710, 151.
Theiler, C., Furno, I., Ricci, P., Fasoli, A., Labit, B., Muller, S. & Plyushchev, G. 2009 Cross-field motion of plasma blobs in an open magnetic field line configuration. Phys. Rev. Lett. 103, 65001.
Trenchi, L., Bruno, R., Telloni, D., D’Amicis, R., Marcucci, M. F., Zurbuchen, T. H. & Weberg, M. 2013 Solar energetic particle modulations associated with coherent magnetic structures. Astrophys. J. 770, 11.
Trotta, E. M. & Zimbardo, G. 2011 Quasi-ballistic and superdiffusive transport for impulsive solar particle events. Astron. Astrophys. 530, A130.
Vainio, R. & Schlickeiser, R. 1999 Self-consistent Alfvén-wave transmission and test-particle acceleration at parallel shocks. Astron. Astrophys. 343, 303311.
Vink, J. 2012 Supernova remnants: the X-ray perspective. Astron. Astrophys. Rev. 20, 49.
Webb, G. M., Zank, G. P., Kaghashvili, E. Kh. & le Roux, J. A. 2006 Compound and perpendicular diffusion of cosmic rays and random walk of the field lines. I. Parallel particle transport models. Astrophys. J. 651, 211.
Zaslavsky, G. M. 2002 Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461580.
Zimbardo, G. 2005 Anomalous particle diffusion and Lévy random walk of magnetic field lines in three-dimensional solar wind turbulence. Plasma Phys. Control. Fusion 47, B755B767.
Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., Vörös, Z., Aburjania, G., Chargazia, K. & Alexandrova, O. 2010 Magnetic turbulence in the geospace environment. Space Sci. Rev. 156, 89.
Zimbardo, G., Greco, A. & Veltri, P. 2000a Superballistic transport in tearing driven magnetic turbulence. Phys. Plasmas 7, 10711074.
Zimbardo, G. & Perri, S. 2013 From Lévy walks to superdiffusive shock acceleration. Astrophys. J. 778, 35.
Zimbardo, G., Perri, S., Pommois, P. & Veltri, P. 2012 Anomalous particle transport in the heliosphere. Adv. Space Res. 49, 1633.
Zimbardo, G., Pommois, P. & Veltri, P. 2004 Magnetic flux tube evolution in solar wind anisotropic magnetic turbulence. J. Geophys. Res. 109, A02113.
Zimbardo, G., Pommois, P. & Veltri, P. 2006 Superdiffusive and subdiffusive transport of energetic particles in solar wind anisotropic magnetic turbulence. Astrophys. J. Lett. 639, L91L94.
Zimbardo, G., Veltri, P. & Pommois, P. 2000b Anomalous, quasilinear, and percolative regimes for magnetic-field-line transport in axially symmetric turbulence. Phys. Rev. E 61, 19401948.
Zumofen, G. & Klafter, J. 1993 Scale-invariant motion in intermittent chaotic systems. Phys. Rev. E 47, 851863.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Superdiffusive transport in laboratory and astrophysical plasmas

  • G. Zimbardo (a1), E. Amato (a2), A. Bovet (a3), F. Effenberger (a4) (a5), A. Fasoli (a3), H. Fichtner (a6), I. Furno (a3), K. Gustafson (a3), P. Ricci (a3) and S. Perri (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed