Skip to main content Accessibility help

Study on the influence of the magnetic field geometry on the power deposition in a helicon plasma source

  • M. Magarotto (a1), D. Melazzi (a2) and D. Pavarin (a3)


We have numerically studied how an actual confinement magnetostatic field affects power deposition in a helicon source. We have solved the wave propagation by means of two electromagnetic solvers, namely: (i) plaSma Padova Inhomogeneous Radial Electromagnetic solver (SPIREs), a mono-dimensional finite-difference frequency-domain code, and (ii) Advanced coDe for Anisotropic Media and ANTennas (ADAMANT), a full-wave three-dimensional tool based on the method of moments. We have computed the deposited power spectrum with SPIREs, power deposition profile with ADAMANT and the antenna impedance with both codes. First we have verified the numerical accuracy of both SPIREs and ADAMNT. Then, we have analysed two configurations of magnetostatic field, namely produced by Maxwell coils, and Helmholtz coils. For each configuration we have studied three cases: (i) low density $n=10^{17}~\text{m}^{-3}$ and low magnetic field $B_{0}=250$  G; (ii) medium density $n=10^{18}~\text{m}^{-3}$ and medium magnetic field $B_{0}=500$  G; (iii) high density $n=10^{19}~\text{m}^{-3}$ and high magnetic field $B_{0}=1000$  G. We have found that the Maxwell coil configuration does not produces significant changes in the deposited power phenomenon with respect to a perfectly uniform and axial magnetostatic field. While the Helmholtz coil configuration can lead to a power spectrum peaked near the axis of the discharge.


Corresponding author

Email address for correspondence:


Hide All
Ahedo, E. & Merino, M. 2010 Two-dimensional supersonic plasma acceleration in a magnetic nozzle. Phys. Plasmas 17 (7), 073501.
Amestoy, P., Duff, I., LExcellent, J. & Koster, J.2007. Multifrontal massively parallel solver (mumps version 4.6): Users guide http://enseeiht. fr/apo/mumps/ and
Balanis, C. A. 2016 Antenna Theory: Analysis and Design. Wiley.
Batishchev, O. V. 2009 Minihelicon plasma thruster. IEEE Trans. Plasma Sci. 37 (8), 15631571.
Bose, D., Govindan, T. & Meyyappan, M. 2003 Modeling of a helicon plasma source. IEEE Trans. Plasma Sci. 31 (4), 464470.
Braginskii, O., Vasileva, A. & Kovalev, A. 2001 Helicon plasma in a nonuniform magnetic field. Phys. Rep. 27 (8), 699707.
Breizman, B. N. & Arefiev, A. V. 2000 Radially localized helicon modes in nonuniform plasma. Phys. Rev. Lett. 84 (17), 3863.
Cardinali, A., Melazzi, D., Manente, M. & Pavarin, D. 2014 Ray-tracing WKB analysis of whistler waves in non-uniform magnetic fields applied to space thrusters. Plasma Sources Sci. Technol. 23 (1), 015013.
Chang, L., Hole, M., Caneses, J., Chen, G., Blackwell, B. & Corr, C. 2012 Wave modeling in a cylindrical non-uniform helicon discharge. Phys. Plasmas 19 (8), 083511.
Chen, F. F. 2015 Helicon discharges and sources: a review. Plasma Sources Sci. Technol. 24 (1), 014001.
Chen, F. F. & Arnush, D. 1997 Generalized theory of helicon waves. I. Normal modes. Phys. Plasmas 4 (9), 34113421.
Chen, F. F. & Blackwell, D. D. 1999 Upper limit to Landau damping in helicon discharges. Phys. Rev. Lett. 82 (13), 2677.
Chen, G., Arefiev, A. V., Bengtson, R. D., Breizman, B. N., Lee, C. A. & Raja, L. L. 2006 Resonant power absorption in helicon plasma sources. Phys. Plasmas 13 (12), 123507.
Diaz, F. R. C. 2000 The VASIMR rocket. Sci. Am. 283 (5), 9097.
Goebel, D. M. & Katz, I. 2008 Fundamentals of Electric Propulsion: Ion and Hall Thrusters. JPL Space Science and Technology Series.
Guo, X. M., Scharer, J., Mouzouris, Y. & Louis, L. 1999 Helicon experiments and simulations in nonuniform magnetic field configurations. Phys. Plasmas 6 (8), 34003407.
Jackson, J. D. 1999 Classical Electrodynamics. John Wiley & Sons Inc.
Kinder, R. L. & Kushner, M. J. 2001 Wave propagation and power deposition in magnetically enhanced inductively coupled and helicon plasma sources. J. Vacuum Sci. Technol. A 19 (1), 7686.
Krämer, M. 1999 Propagation and damping of $m=+1$ and $m=-1$ helicon modes in an inhomogeneous plasma column. Phys. Plasmas 6 (4), 10521058.
Kuwahara, D., Koyama, Y., Otsuka, S., Ishii, T., Ishii, H., Fujitsuka, H., Waseda, S. & Shinohara, S. 2014 Development of direct thrust measurement system for the completely electrodeless helicon plasma thruster. Plasma Fusion Res. 9, 3406025.
Lafleur, T., Charles, C. & Boswell, R. 2010 Plasma control by modification of helicon wave propagation in low magnetic fields. Phys. Plasmas 17 (7), 073508.
Lafleur, T., Charles, C. & Boswell, R. 2011 Characterization of a helicon plasma source in low diverging magnetic fields. J. Phys. D: Appl. Phys. 44 (5), 055202.
Manente, M., Trezzolani, F., Magarotto, M., Fantino, E., Selmo, A., Bellomo, N., Toson, E. & Pavarin, D. 2019 REGULUS: A propulsion platform to boost small satellite missions. Acta Astron. 157, 241249.
Melazzi, D., Curreli, D., Manente, M., Carlsson, J. & Pavarin, D. 2012 SPIREs: A finite-difference frequency-domain electromagnetic solver for inhomogeneous magnetized plasma cylinders. Comput. Phys. Commun. 183 (6), 11821191.
Melazzi, D. & Lancellotti, V. 2014 ADAMANT: A surface and volume integral-equation solver for the analysis and design of helicon plasma sources. Comput. Phys. Commun. 185 (7), 19141925.
Merino, M., Navarro, J., Casado, S., Ahedo, E., Gómez, V., Ruiz, M., Bosch, E. & del Amo, J. G. 2015 Design and development of a 1 kW-class helicon antenna thruster. In 34th International Electric Propulsion Conference.
Mouzouris, Y. & Scharer, J. E. 1996 Modeling of profile effects for inductive helicon plasma sources. IEEE Trans. Plasma Sci. 24 (1), 152160.
Pavarin, D., Ferri, F., Manente, M., Lucca Fabris, A., Trezzolani, F., Faenza, M., Tasinato, L., Rondini, D., Curreli, D., Melazzi, D. et al. 2012 Characterization of the Helicon Plasma Thruster of the EU FP7 program. In Proceedings of the 3rd Space Propulsion Conference.
Peterson, A. F., Ray, S. L. & Mittra, R. 1998 Computational Methods for Electromagnetics, vol. 2. IEEE Press.
Pottinger, S., Lappas, V., Charles, C. & Boswell, R. 2011 Performance characterization of a helicon double layer thruster using direct thrust measurements. J. Phys. D: Appl. Phys. 44 (23), 235201.
Rothwell, E. J. & Cloud, M. J. 2018 Electromagnetics. CRC press.
Sheehan, J. P., Collard, T. A., Ebersohn, F. H. & Longmier, B. W. 2015 Initial operation of the cubesat ambipolar thruster. In 34th International Electric Propulsion Conference.
Shinohara, S., Nishida, H., Tanikawa, T., Hada, T., Funaki, I. & Shamrai, K. P. 2014 Development of electrodeless plasma thrusters with high-density helicon plasma sources. IEEE Trans. Plasma Sci. 42 (5), 12451254.
Stix, T. H. 1962 The theory of plasma waves. In The Theory of Plasma Waves. McGraw-Hill.
Swanson, D. G. 2012 Plasma Waves. Elsevier.
Takahashi, K., Komuro, A. & Ando, A. 2015 Effect of source diameter on helicon plasma thruster performance and its high power operation. Plasma Sources Sci. Technol. 24 (5), 055004.
Takahashi, K., Lafleur, T., Charles, C., Alexander, P., Boswell, R., Perren, M., Laine, R., Pottinger, S., Lappas, V., Harle, T. et al. 2011 Direct thrust measurement of a permanent magnet helicon double layer thruster. Appl. Phys. Lett. 98 (14), 141503.
Trezzolani, F., Manente, M., Selmo, A., Melazzi, D., Magarotto, M., Moretto, D., De Carlo, P., Pessana, M. & Pavarin, D. 2017 Development and test of an high power RF plasma thruster in project SAPERE-STRONG. In Proceedings of the 35th International Electric Propulsion Conference (IEPC), IEPC-2017-462, Atlanta, GA, USA.
Tysk, S. M., Denning, C. M., Scharer, J. E. & Akhtar, K. 2004 Optical, wave measurements, and modeling of helicon plasmas for a wide range of magnetic fields. Phys. Plasmas 11 (3), 878887.
Virko, V., Shamrai, K., Virko, Y. V. & Kirichenko, G. 2004 Wave phenomena, hot electrons, and enhanced plasma production in a helicon discharge in a converging magnetic field. Phys. Plasmas 11 (8), 38883897.
Ziemba, T., Carscadden, J., Slough, J., Prager, J. & Winglee, R. 2005 High power helicon thruster. In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson AZ, USA.
MathJax is a JavaScript display engine for mathematics. For more information see



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed