Skip to main content Accessibility help
×
Home

Stochastic proton heating by kinetic-Alfvén-wave turbulence in moderately high- $\unicode[STIX]{x1D6FD}$ plasmas

  • Ian W. Hoppock (a1), Benjamin D. G. Chandran (a1), Kristopher G. Klein (a2) (a3), Alfred Mallet (a1) (a4) and Daniel Verscharen (a1) (a5)...

Abstract

Stochastic heating refers to an increase in the average magnetic moment of charged particles interacting with electromagnetic fluctuations whose frequencies are smaller than the particles’ cyclotron frequencies. This type of heating arises when the amplitude of the gyroscale fluctuations exceeds a certain threshold, causing particle orbits in the plane perpendicular to the magnetic field to become stochastic rather than nearly periodic. We consider the stochastic heating of protons by Alfvén-wave (AW) and kinetic-Alfvén-wave (KAW) turbulence, which may make an important contribution to the heating of the solar wind. Using phenomenological arguments, we derive the stochastic-proton-heating rate in plasmas in which $\unicode[STIX]{x1D6FD}_{\text{p}}\sim 1$ –30, where $\unicode[STIX]{x1D6FD}_{\text{p}}$ is the ratio of the proton pressure to the magnetic pressure. (We do not consider the $\unicode[STIX]{x1D6FD}_{\text{p}}\gtrsim 30$ regime, in which KAWs at the proton gyroscale become non-propagating.) We test our formula for the stochastic-heating rate by numerically tracking test-particle protons interacting with a spectrum of randomly phased AWs and KAWs. Previous studies have demonstrated that at $\unicode[STIX]{x1D6FD}_{\text{p}}\lesssim 1$ , particles are energized primarily by time variations in the electrostatic potential and thermal-proton gyro-orbits are stochasticized primarily by gyroscale fluctuations in the electrostatic potential. In contrast, at $\unicode[STIX]{x1D6FD}_{\text{p}}\gtrsim 1$ , particles are energized primarily by the solenoidal component of the electric field and thermal-proton gyro-orbits are stochasticized primarily by gyroscale fluctuations in the magnetic field.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Stochastic proton heating by kinetic-Alfvén-wave turbulence in moderately high- $\unicode[STIX]{x1D6FD}$ plasmas
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Stochastic proton heating by kinetic-Alfvén-wave turbulence in moderately high- $\unicode[STIX]{x1D6FD}$ plasmas
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Stochastic proton heating by kinetic-Alfvén-wave turbulence in moderately high- $\unicode[STIX]{x1D6FD}$ plasmas
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: ian.hoppock@unh.edu

References

Hide All
Bale, S. D., Kellogg, P. J., Mozer, F. S., Horbury, T. S. & Reme, H. 2005 Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94 (21), 215002.
Belcher, J. W. 1971 ALFVÉNIC wave pressures and the solar wind. Astrophys. J. 168, 509.
Boris, J. P. 1970 Relativistic plasma simulation-optimization of a hybrid code. In Proceeding of Fourth Conference on Numerical Simulations of Plasmas.
Bourouaine, S. & Chandran, B. D. G. 2013 Observational test of stochastic heating in low- $\unicode[STIX]{x1D6FD}$ fast-solar-wind streams. Astrophys. J. 774, 96, arXiv:1307.3789.
Carbone, V., Bruno, R., Sorriso-Valvo, L. & Lepreti, F. 2004 Intermittency of magnetic turbulence in slow solar wind. Planet. Space Sci. 52, 953956.
Chandran, B., Verscharen, D., Quataert, E., Kasper, C., Isenberg, P. & Bourouaine, B. 2013 Stochastic heating, differential flow, and the alpha-to-proton temperature ratio in the solar wind. Astrophys. J. 776, 45.
Chandran, B. D. G., Dennis, T. J., Quataert, E. & Bale, S. D. 2011 Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence. Astrophys. J. 743, 197, arXiv:1110.3029.
Chandran, B. D. G., Li, B., Rogers, B. N., Quataert, E. & Germaschewski, K. 2010 Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys. J. 720, 503515.
Chandran, B. D. G., Schekochihin, A. A. & Mallet, A. 2015 Intermittency and alignment in strong RMHD turbulence. Astrophys. J. 807, 39, arXiv:1403.6354.
Chaston, C. C., Bonnell, J. W., Carlson, C. W., McFadden, J. P., Ergun, R. E., Strangeway, R. J. & Lund, E. J. 2004a Auroral ion acceleration in dispersive Alfvén waves. J. Geophys. Res. Phys. 109 (A4), a04205.
Chaston, C. C., Bonnell, J. W., Carlson, C. W., McFadden, J. P., Ergun, R. E., Strangeway, R. J. & Lund, E. J. 2004b Auroral ion acceleration in dispersive Alfvén waves. J. Geophys. Res. (Space Phys.) 109, 4205.
Chen, C. H. K. 2016 Recent progress in astrophysical plasma turbulence from solar wind observations. J. Plasma Phys. 82 (6), 535820602.
Chen, L., Lin, Z. & White, R. 2001a On resonant heating below the cyclotron frequency. Phys. Plasmas 8 (11), 47134716.
Chen, L., Lin, Z. & White, R. 2001b On resonant heating below the cyclotron frequency. Phys. Plasmas 8, 47134716.
Cho, J. & Lazarian, A. 2004 The anisotropy of electron magnetohydrodynamic turbulence. Astrophys. J. Lett. 615, L41L44.
Cho, J. & Vishniac, E. T. 2000 The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J. 539, 273282.
Coleman, P. J. Jr. 1968 Turbulence, viscosity, and dissipation in the solar–wind plasma. Astrophys. J. 153, 371.
Cranmer, S. R., van Ballegooijen, A. A. & Edgar, R. J. 2007 Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. 171, 520551.
Cranmer, S. R., Matthaeus, W. H., Breech, B. A. & Kasper, J. C. 2009 Empirical constraints on proton and electron heating in the fast solar wind. Astrophys. J. 702, 16041614.
De Pontieu, B., McIntosh, S. W., Carlsson, M., Hansteen, V. H., Tarbell, T. D., Schrijver, C. J., Title, A. M., Shine, R. A., Tsuneta, S., Katsukawa, Y. et al. 2007 Chromospheric alfvénic waves strong enough to power the solar wind. Science 318 (5856), 15741577.
Dmitruk, P., Matthaeus, W. H. & Seenu, N. 2004 Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence. Astrophys. J. 617, 667679.
Durney, B. R. 1972 Solar-wind properties at the earth as predicted by one-fluid models. J. Geophys. Res. 77 (22), 40424051.
Esser, R., Fineschi, S., Dobrzycka, D., Habbal, S. R., Edgar, R. J., Raymond, J. C., Kohl, J. L. & Guhathakurta, M. 1999 Plasma properties in coronal holes derived from measurements of minor ion spectral lines and polarized white light intensity. Astrophys. J. Lett. 510 (1), L63.
Fiksel, G., Almagri, A. F., Chapman, B. E., Mirnov, V. V., Ren, Y., Sarff, J. S. & Terry, P. W. 2009 Mass-dependent ion heating during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 103 (14), 145002.
Goldreich, P. & Sridhar, S. 1995 Toward a theory of interstellar turbulence. 2: strong Alfvénic turbulence. Astrophys. J. 438, 763775.
Grošelj, D., Cerri, S. S., Bañón Navarro, A., Willmott, C., Told, D., Loureiro, N. F., Califano, F. & Jenko, F. 2017 Fully kinetic versus reduced-kinetic modeling of collisionless plasma turbulence. Astrophys. J. 847, 28, arXiv:1706.02652.
Hartle, R. E. & Sturrock, P. A. 1968 Two-fluid model of the solar wind. Astrophys. J. 151, 1155.
Hauff, T., Jenko, F., Shalchi, A. & Schlickeiser, R. 2010 Scaling theory for cross-field transport of cosmic rays in turbulent fields. Astrophys. J. 711, 9971007.
Hellinger, P. & Matsumoto, H. 2000 New kinetic instability: oblique Alfvén fire hose. J. Geophys. Res. 105, 1051910526.
Hellinger, P., Trávníček, P. M., Štverák, Š., Matteini, L. & Velli, M. 2013 Proton thermal energetics in the solar wind: helios reloaded. J. Geophys. Res. (Space Phys.) 118, 13511365.
Hollweg, J. V. 1999 Kinetic alfvén wave revisited. J. Geophys. Res. 104 (A7), 1481114819.
Hollweg, J. V. & Isenberg, P. A. 2002 Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J. Geophys. Res. (Space Phys.) 107, 1147.
Horbury, T. S., Forman, M. & Oughton, S. 2008 Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101 (17), 175005.
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2008 A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. (Space Phys.) 113, A05103.
Hughes, R. S., Gary, S. P., Wang, J. & Parashar, T. N. 2017 Kinetic Alfvén turbulence: electron and ion heating by particle-in-cell simulations. Astrophys. J. Lett. 847, L14.
van der Holst, B., Sokolov, I. V., Meng, X., Jin, M., Manchester, W. B. IV, Tóth, G. & Gombosi, T. I. 2014 Alfvén wave solar model (AWSoM): coronal heating. Astrophys. J. 782, 81, arXiv:1311.4093.
Johnson, J. R. & Cheng, C. Z. 2001 Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys. Res. Lett. 28, 44214424.
Kawazura, Y., Barnes, M. & Schekochihin, A. A.2018 Thermal disequilibration of ions and electrons by collisionless plasma turbulence. ArXiv e-prints, arXiv:1807.07702.
Klein, K. G. & Chandran, B. D. G. 2016 Evolution of the proton velocity distribution due to stochastic heating in the near-sun solar wind. Astrophys. J. 820, 47, arXiv:1602.05114.
Klein, K. G. & Howes, G. G. 2015 Predicted impacts of proton temperature anisotropy on solar wind turbulence. Phys. Plasmas 22 (3), 032903.
Kruskal, M. 1962 Asymptotic theory of Hamiltonian and other systems with all solutions nearly periodic. J. Math. Phys. 3, 806828.
Kunz, M. W., Abel, I. G., Klein, K. G. & Schekochihin, A. A. 2018 Astrophysical gyrokinetics: turbulence in pressure-anisotropic plasmas at ion scales and beyond. J. Plasma Phys. 84 (2), 715840201.
Lehe, R., Parrish, I. J. & Quataert, E. 2009 The heating of test particles in numerical simulations of Alfvénic turbulence. Astrophys. J. 707, 404419.
Lynn, J. W., Parrish, I. J., Quataert, E. & Chandran, B. D. G. 2012 Resonance broadening and heating of charged particles in magnetohydrodynamic turbulence. Astrophys. J. 758 (2), 78.
Mallet, A., Klein, K. G., Chandran, B. D. G., Groselj, D., Hoppock, I. W., Bowen, T. A., Salem, C. S. & Bale, S. D.2018 Interplay between intermittency and dissipation in collisionless plasma turbulence, ArXiv e-prints, arXiv:1807.09301.
Mallet, A., Schekochihin, A. A. & Chandran, B. D. G. 2015 Refined critical balance in strong Alfvénic turbulence. Mon. Not. R. Astron. Soc. 449, L77L81.
Mangeney, A., Salem, C., Veltri, P. L. & Cecconi, B. 2001 Intermittency in the solar wind turbulence and the haar wavelet transform. In Sheffield Space Plasma Meeting: Multipoint Measurements Versus Theory (ed. Warmbein, B.), vol. 492, p. 53. ESA Special Publication.
Markovskii, S. A., Vasquez, B. J., Smith, C. W. & Hollweg, J. V. 2006 Dissipation of the perpendicular turbulent cascade in the solar wind. Astrophys. J. 639 (2), 1177.
Marsch, E. 2006 Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3, 1.
McChesney, J. M., Stern, R. A. & Bellan, P. M. 1987 Observation of fast stochastic ion heating by drift waves. Phys. Rev. Lett. 59, 14361439.
Northrop, T. G. 1963 The Adiabatic Motion of Charged Particles. Interscience.
Parker, E. N. 1958 Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664.
Parker, E. N. 1965 Dynamical theory of the solar wind. Space Sci. Rev. 4, 666708.
Podesta, J. J. 2013 Evidence of kinetic Alfvén waves in the solar wind at 1 AU. Solar Phys. 286, 529548.
Quataert, E. 1998 Particle heating by Alfvénic turbulence in hot accretion flows. Astrophys. J. 500, 978991.
Salem, C., Mangeney, A., Bale, S. D. & Veltri, P. 2009 Solar wind magnetohydrodynamics turbulence: anomalous scaling and role of intermittency. Astrophys. J. 702, 537553.
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182 (1), 310.
Servidio, S., Greco, A., Matthaeus, W. H., Osman, K. T. & Dmitruk, P. 2011 Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence. J. Geophys. Res. 116 (A9), a09102.
Shebalin, J. V., Matthaeus, W. H. & Montgomery, D. 1983 Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525547.
TenBarge, J. M., Podesta, J. J., Klein, K. G. & Howes, G. G. 2012 Interpreting magnetic variance anisotropy measurements in the solar wind. Astrophys. J. 753, 107, arXiv:1205.0749.
Tomczyk, S., McIntosh, S. W., Keil, S. L., Judge, P. G., Schad, T., Seeley, D. H. & Edmondson, J. 2007 Alfvén waves in the solar corona. Science 317 (5842), 11921196.
Tu, C.-Y. & Marsch, E. 1995 MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73, 1210.
Vech, D., Klein, K. G. & Kasper, J. C. 2017 Nature of stochastic ion heating in the solar wind: testing the dependence on plasma beta and turbulence amplitude. Astrophys. J. Lett. 850, L11, arXiv:1711.01508.
Vech, D., Klein, K. G. & Kasper, J. C. 2018 Large-scale control of kinetic dissipation in the solar wind. Astrophys. J. Lett. 863, L4, arXiv:1807.04773.
Verdini, A., Velli, M., Matthaeus, W. H., Oughton, S. & Dmitruk, P. 2010 A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. Astrophys. J. Lett. 708, L116L120.
Wu, P., Wan, M., Matthaeus, W. H., Shay, M. A. & Swisdak, M. 2013 von Kármán energy decay and heating of protons and electrons in a kinetic turbulent plasma. Phys. Rev. Lett. 111 (12), 121105.
Xia, Q., Perez, J. C., Chandran, B. D. G. & Quataert, E. 2013 Perpendicular ion heating by reduced magnetohydrodynamic turbulence. Astrophys. J. 776, 90, arXiv:1309.0742.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Stochastic proton heating by kinetic-Alfvén-wave turbulence in moderately high- $\unicode[STIX]{x1D6FD}$ plasmas

  • Ian W. Hoppock (a1), Benjamin D. G. Chandran (a1), Kristopher G. Klein (a2) (a3), Alfred Mallet (a1) (a4) and Daniel Verscharen (a1) (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed