Skip to main content Accessibility help
×
Home

Stellarator equilibria with reactor relevant energetic particle losses

  • Aaron Bader (a1), M. Drevlak (a2), D. T. Anderson (a1), B. J. Faber (a1), C. C. Hegna (a1), K. M. Likin (a1), J. C. Schmitt (a3) and J. N. Talmadge (a1)...

Abstract

Stellarator configurations with reactor relevant energetic particle losses are constructed by simultaneously optimizing for quasisymmetry and an analytically derived metric ( $\unicode[STIX]{x1D6E4}_{c}$ ), which attempts to align contours of the second adiabatic invariant, $J_{\Vert }$ with magnetic surfaces. Results show that with this optimization scheme it is possible to generate quasihelically symmetric equilibria on the scale of ARIES-CS which completely eliminate all collisionless alpha particle losses within normalized radius $r/a=0.3$ . We show that the best performance is obtained by reducing losses at the trapped–passing boundary. Energetic particle transport can be improved even when neoclassical transport, as calculated using the metric $\unicode[STIX]{x1D716}_{\text{eff}}$ , is degraded. Several quasihelically symmetric equilibria with different aspect ratios are presented, all with excellent energetic particle confinement.

Copyright

Corresponding author

Email address for correspondence: abader@engr.wisc.edu

References

Hide All
Anderson, F. S. B., Almagri, A. F., Anderson, D. T., Matthews, P. G., Talmadge, J. N. & Shohet, J. L. 1995 The helically symmetric experiment, (HSX) goals, design and status. Fusion Technol. 27 (3T), 273277.
Boozer, A. H. 1982 Establishment of magnetic coordinates for a given magnetic field. Phys. Fluids 25 (3), 520521.
Brent, R. P. 2013 Algorithms for Minimization without Derivatives. Courier Corporation.
Cary, J. R., Hedrick, C. L. & Tolliver, J. S. 1988 Orbits in asymmetric toroidal magnetic fields. Phys. Fluids 31 (6), 15861600.
Connor, J. W. & Hastie, R. J. 1974 Neoclassical diffusion in an $l=3$ stellarator. Phys. Fluids 17 (1), 114123.
Drevlak, M., Beidler, C. D., Geiger, J., Helander, P. & Turkin, Y. 2018 Optimisation of stellarator equilibria with rose. Nucl. Fusion 59 (1), 016010.
Drevlak, M., Geiger, J., Helander, P. & Turkin, Y. 2014 Fast particle confinement with optimized coil currents in the W7-X stellarator. Nucl. Fusion 54 (7), 073002.
El-Guebaly, L., Raffray, R., Malang, S., Lyon, J. F., Ku, L. P.& Team ARIES 2005 Benefits of radial build minimization and requirements imposed on aries compact stellarator design. Fusion Sci. Technol. 47 (3), 432439.
Galeev, A. A., Sagdeev, R. Z., Furth, H. P. & Rosenbluth, M. N. 1969 Plasma diffusion in a toroidal stellarator. Phys. Rev. Lett. 22 (11), 511.
Garren, D. A. & Boozer, A. H. 1991 Existence of quasihelically symmetric stellarators. Phys. Fluids B 3 (10), 28222834.
Gates, D. A., Anderson, D., Anderson, S., Zarnstorff, M., Spong, D. A., Weitzner, H., Neilson, G. H., Ruzic, D., Andruczyk, D., Harris, J. H. et al. 2018 Stellarator research opportunities: a report of the national stellarator coordinating committee. J. Fusion Energy 37 (1), 5194.
Helander, P., Beidler, C. D., Bird, T. M., Drevlak, M., Feng, Y., Hatzky, R., Jenko, F., Kleiber, R., Proll, J. H. E., Turkin, Y. et al. 2012 Stellarator and tokamak plasmas: a comparison. Plasma Phys. Control. Fusion 54 (12), 124009.
Henneberg, S. A., Drevlak, M., Nührenberg, C., Beidler, C. D., Turkin, Y., Loizu, J. & Helander, P. 2019 Properties of a new quasi-axisymmetric configuration. Nucl. Fusion 59 (2), 026014.
Hirshman, S. P. & Whitson, J. C. 1983 Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria. Phys. Fluids 26 (12), 35533568.
Klinger, T., Alonso, A., Bozhenkov, S., Burhenn, R., Dinklage, A., Fuchert, G., Geiger, J., Grulke, O., Langenberg, A., Hirsch, M. et al. 2016 Performance and properties of the first plasmas of wendelstein 7-x. Plasma Phys. Control. Fusion 59 (1), 014018.
Ku, L. P. & Garabedian, P. R. 2006 New classes of quasi-axisymmetric stellarator configurations. Fusion Sci. Technol. 50 (2), 207215.
Landreman, M. & Paul, E. 2018 Computing local sensitivity and tolerances for stellarator physics properties using shape gradients. Nucl. Fusion 58 (7), 076023.
Landreman, M. & Sengupta, W. 2018 Direct construction of optimized stellarator shapes. Part 1. Theory in cylindrical coordinates. J. Plasma Phys. 84 (6), 905840616.
Landreman, M., Smith, H. M., Mollén, A. & Helander, P. 2014 Comparison of particle trajectories and collision operators for collisional transport in nonaxisymmetric plasmas. Phys. Plasmas 21 (4), 042503.
Liu, H., Shimizu, A., Isobe, M., Okamura, S., Nishimura, S., Suzuki, C., Xu, Y., Zhang, X., Liu, B., Huang, J. et al. 2018 Magnetic configuration and modular coil design for the chinese first quasi-axisymmetric stellarator. Plasma Fusion Res. 13, 3405067.
Lotz, W., Merkel, P., Nuhrenberg, J. & Strumberger, E. 1992 Collisionless alpha-particle confinement in stellarators. Plasma Phys. Control. Fusion 34 (6), 1037.
Mau, T. K., Kaiser, T. B., Grossman, A. A., Raffray, A. R., Wang, X. R., Lyon, J. F., Maingi, R., Ku, L. P., Zarnstorff, M. C.& Team ARIES-CS 2008 Divertor configuration and heat load studies for the aries-cs fusion power plant. Fusion Sci. Technol. 54 (3), 771786.
Mikhailov, M. I., Shafranov, V. D., Subbotin, A. A., Isaev, M. Y., Nührenberg, J., Zille, R. & Cooper, W. A. 2002 Improved $\unicode[STIX]{x1D6FC}$ -particle confinement in stellarators with poloidally closed contours of the magnetic field strength. Nucl. Fusion 42 (11), L23.
Mynick, H. E. 2006 Transport optimization in stellarators. Phys. Plasmas 13 (5), 058102.
Mynick, H. E., Boozer, A. H. & Ku, L. P. 2006 Improving confinement in quasi-axisymmetric stellarators. Phys. Plasmas 13 (6), 064505.
Najmabadi, F., Raffray, A. R., Abdel-Khalik, S. I., Bromberg, L., Crosatti, L., El-Guebaly, L., Garabedian, P. R., Grossman, A. A., Henderson, D., Ibrahim, A. et al. 2008 The aries-cs compact stellarator fusion power plant. Fusion Sci. Technol. 54 (3), 655672.
Nemov, V. V., Kasilov, S. V. & Kernbichler, W. 2014 Collisionless high energy particle losses in optimized stellarators calculated in real-space coordinates. Phys. Plasmas 21 (6), 062501.
Nemov, V. V., Kasilov, S. V., Kernbichler, W. & Heyn, M. F. 1999 Evaluation of $1/\unicode[STIX]{x1D708}$ neoclassical transport in stellarators. Phys. Plasmas 6 (12), 46224632.
Nemov, V. V., Kasilov, S. V., Kernbichler, W. & Leitold, G. O. 2005 The $\unicode[STIX]{x1D735}b$ drift velocity of trapped particles in stellarators. Phys. Plasmas 12 (11), 112507.
Nemov, V. V., Kasilov, S. V., Kernbichler, W. & Leitold, G. O. 2008 Poloidal motion of trapped particle orbits in real-space coordinates. Phys. Plasmas 15 (5), 052501.
Nührenberg, J. & Zille, R. 1988 Quasi-helically symmetric toroidal stellarators. Phys. Lett. A 129, 113117.
Okamura, S., Matsuoka, K., Nishimura, S., Isobe, M., Nomura, I., Suzuki, C., Shimizu, A., Murakami, S., Nakajima, N., Yokoyama, M. et al. 2001 Physics and engineering design of the low aspect ratio quasi-axisymmetric stellarator CHS-QA. Nucl. Fusion 41 (12), 1865.
Paul, E. J., Landreman, M., Bader, A. & Dorland, W. 2018 An adjoint method for gradient-based optimization of stellarator coil shapes. Nucl. Fusion 58 (7), 076015.
Shinohara, K., Tani, K., Oikawa, T., Putvinski, S., Schaffer, M. & Loarte, A. 2012 Effects of rippled fields due to ferritic inserts and ELM mitigation coils on energetic ion losses in a 15 MA inductive scenario in ITER. Nucl. Fusion 52 (9), 094008.
Spong, D. A. 2015 3D toroidal physics: testing the boundaries of symmetry breaking. Phys. Plasmas 22 (5), 055602.
Spong, D. A., Hirshman, S. P., Whitson, J. C., Batchelor, D. B., Carreras, B. A., Lynch, V. E. & Rome, J. A. 1998 J* optimization of small aspect ratio stellarator/tokamak hybrid devices. Phys. Plasmas 5 (5), 17521758.
Tobita, K., Nakayama, T., Konovalov, S. V. & Sato, M. 2003 Reduction of energetic particle loss by ferritic steel inserts in ITER. Plasma Phys. Control. Fusion 45 (2), 133.
Warmer, F., Beidler, C. D., Dinklage, A., Wolf, R. et al. 2016 From W7-X to a helias fusion power plant: motivation and options for an intermediate-step burning-plasma stellarator. Plasma Phys. Control. Fusion 58 (7), 074006.
Zarnstorff, M. C., Berry, L. A., Brooks, A., Fredrickson, E., Fu, G. Y., Hirshman, S., Hudson, S., Ku, L. P., Lazarus, E., Mikkelsen, D. et al. 2001 Physics of the compact advanced stellarator NCSX. Plasma Phys. Control. Fusion 43 (12A), A237.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Stellarator equilibria with reactor relevant energetic particle losses

  • Aaron Bader (a1), M. Drevlak (a2), D. T. Anderson (a1), B. J. Faber (a1), C. C. Hegna (a1), K. M. Likin (a1), J. C. Schmitt (a3) and J. N. Talmadge (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed