Skip to main content Accessibility help
×
Home

Special issue: The Vlasov equation, from space to laboratory plasmas

  • F. Califano (a1), G. Manfredi (a2) and F. Valentini (a3)
  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Special issue: The Vlasov equation, from space to laboratory plasmas
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Special issue: The Vlasov equation, from space to laboratory plasmas
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Special issue: The Vlasov equation, from space to laboratory plasmas
      Available formats
      ×

Abstract

  • An abstract is not available for this content so a preview has been provided below. To view the full text please use the links above to select your preferred format.

Copyright

Corresponding author

Email address for correspondence: francesco.califano@unipi.it

References

Hide All
Alexandrova, O. 2008 Solar wind versus magnetosheath turbulence and Alfvén vortices. Nonlinear Process. Geophys. 15, 95.
Bale, S. D., Hull, A., Larson, D. E., Lin, R. P., Muschietti, L., Kellogg, P. J., Goetz, K. & Monson, S. J. 2002 Electrostatic turbulence and Debye-scale structures associated with electron thermalization at collisionless shocks. Astrophys. J. 575, L25L28.
Bale, S. et al. 2005 Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94, 215002.
Bernstein, I., Greene, J. & Kruskal, M. 1957 Exact nonlinear plasma oscillations. Phys. Rev. Lett. 108, 546.
Briand, C. 2015 Langmuir waves across the heliosphere. J. Plasma Phys. 81, 325810204.
Briand, C., Mangeney, A. & Califano, F. 2007 Electrostatic coherent structures generation by local heating in a collisionless plasma. Phys. Lett. A 368, 82.
Burch, J. L. et al. 2016 Electron-scale measurements of magnetic reconnection in space. Science 352, 1189.
Cerri, S. S., Califano, F., Jenko, F., Told, D. & Rincon, F. 2002 Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations. Astrophys. J. 822, L12.
Christon, S. P., Williams, D. J., Mitchell, D. G., Frank, L. & Huang, C. 1989 Spectral characteristics of plasma sheet ion and electron population during undisturbed geomagnetic conditions. J. Geophys. Res. 94, 13409.
Collier, M. R. 1999 Evolution of kappa distributions under velocity space diffusion: a model for the observed relationship between their spectral parameters. J. Geophys. Res. 104, 28559.
Colombi, S. 2015 Vlasov–Poisson in 1D for initially cold systems: post-collapse Lagrangian perturbation theory. Mon. Not. R. Astron. Soc. 446, 29022920.
Connor, J. W. & Wilson, H. R. 1994 Survey of theories of anomalous transport. Plasma Phys. Control. Fusion 36, 719.
Coulette, D. & Manfredi, G. 2015 Collisionless ‘thermalization’ in the sheath of an argon discharge. Phys. Plasmas 22, 043505.
Dorland, W. & Hammett, G. W. 1993 Gyrofluid turbulence models with kinetic effects. Phys. Fluids B 5, 812.
Egedal, J. et al. 2016 Spacecraft observations and analytic theory of crescent-shaped electron distributions in asymmetric magnetic reconnection. Phys. Rev. Lett. 117, 185101.
Ergun, R. E. et al. 1998 Fast satellite observations of large amplitude solitary structures. Geophys. Res. Lett. 25, 2041.
Ergun, R. et al. 2001 Electron phase-space holes and the VLF saucer source region. Geophys. Res. Lett. 28, 3805.
Ergun, R., Malaspina, M., Eriksson, S., Newman, D. et al. 2008 Eigenmode structure in solar wind Langmuir waves. Phys. Rev. Lett. 101, 051101.
Galeotti, L. & Califano, F. 2005 Asymptotic evolution of weakly collisional Vlasov–Poisson plasmas. Phys. Rev. Lett. 95, 015002.
Ghizzo, A. et al. 1988 Stability of Bernstein–Greene–Kruskal plasma equilibria. Numerical experiments over a long time. Phys. Plasmas 31, 72.
Goldman, M. V., Oppenheim, M. M. & Newman, D. L. 1999 Nonlinear two-stream instabilities as an explanation for auroral bipolar wave structures. Geophys. Res. Lett. 26, 1821.
Goldstein, M. et al. 2015 Multipoint observations of plasma phenomena made in space by cluster. J. Plasma Phys. 81, 325810301.
Grandgirard, V., Abiteboul, J., Bigot, J., Cartier-Michaud, T., Crouseilles, N., Dif-Pradalier, G., Ehrlacher, Ch., Esteve, D., Garbe, T. X., Ghendrih, Ph. et al. 2016 A 5D gyrokinetic full-f global semi-Lagrangian code for flux-driven ion turbulence simulations. Comput. Phys. Comm. 207, 3668.
Henri, P., Califano, F., Briand, C. & Mangeney, A. 2010 Vlasov–Poisson simulations of electrostatic parametric instability for localized Langmuir wave packets in the solar wind. J. Geophys. Res. 115, 106.
Henri, P., Califano, F., Briand, C. & Mangeney, A. 2011 Low-energy Langmuir cavitons: asymptotic limit of weak turbulence. J. Europhys. Lett. 96, 55004.
Hurst, J. et al. 2014 Semiclassical Vlasov and fluid models for an electron gas with spin effects. Eur. Phys. J. D 68, 176.
Lapenta, G. 2012 Particle simulations of space weather. J. Comput. Phys. 231 (3), 795.
Lion, S., Alexandrova, O. & Zaslavsky, A. 2016 Coherent events and spectral shape at ion kinetic scales in the fast solar wind turbulence. Astrophys. J. 824, 1.
Maksimovic, M. et al. 2005 Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res. 104, 28559.
Manfredi, G. & Bertrand, P. 2000 Stability of Bernstein–Greene–Kruskal modes. Phys. Plasmas 7, 2425.
Mangeney, A. et al. 1999 WIND observations of coherent electrostatic waves in the solar wind. Ann. Geophys. 17, 307.
Matsumoto, H. H. et al. 1994 Electrostatic solitary waves in the magnetotail: BEN wave forms observed by GEOTAIL. Geophys. Res. Lett. 21, 2915.
Pegoraro, F. et al. 2000 Coherent electromagnetic structures in relativistic plasmas. Phys. Scr. T 84, 89.
Perrone, D. et al. 2016 Coherent events and spectral shape at ion kinetic scales in the fast solar wind turbulence. Astrophys. J. 826, 126.
Pezzi, O., Valentini, F. & Veltri, P. 2016 Collisional relaxation of fine velocity structures in plasmas. Phys. Rev. Lett. 116, 145001.
Romé, M. & Lepreti, F. 2011 Turbulence and coherent structures in non-neutral plasmas. Eur. Phys. J. Plus 126, 28.
Schamel, H. 2000 Hole equilibria in Vlasov, ÄìPoisson systems: a challenge to wave theories of ideal plasmas. Phys. Plasmas 7, 4831.
Servidio, S. et al. 2015 A kinetic model of plasma turbulence. J. Plasma Phys. 81, 325810107.
Sulem, P. L. & Passot, T. 2000 Landau fluid closures with nonlinear large-scale finite Larmor radius corrections for collisionless plasmas. J. Plasma Phys. 81, 325810103.
Vaivads, A. et al. 2016 Turbulence heating observe R – satellite mission proposal. J. Plasma Phys. 82, 905820501.
Valentini, F., Califano, F., Hellinger, P. & Mangeney, A. 2007 A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma. J. Comput. Phys. 225, 753.
Valentini, F., Servidio, S., Perrone, D., Califano, F., Matthaeus, W. H. & Veltri, P. 2014 Hybrid Vlasov–Maxwell simulations of two-dimensional turbulence in plasmas. Phys. Plasmas 21, 082307.
Valsaque, F. et al. 2002 Kinetic simulations of ion temperature measurements from retarding field analyzers. Phys. Plasmas 9, 1806.
Zelenyi, L. & Artemyev, A. 2016 Effective collisions in weakly magnetized collisionless plasma: importance of Pitaevski’s effect for magnetic reconnection. J. Plasma Phys. 82, 305820101.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Special issue: The Vlasov equation, from space to laboratory plasmas

  • F. Califano (a1), G. Manfredi (a2) and F. Valentini (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed