Skip to main content Accessibility help

Simple model of reduced electric field in ambipolar regime of dc discharge positive column in hydrogen

  • V. A. Lisovskiy (a1) (a2), E. P. Artushenko (a1) (a2) and V. D. Yegorenkov (a1)


We studied the positive column of the dc discharge through analytical modeling. We considered the ambipolar regime when the balance of charged particles is determined only by direct ionization of molecules by electrons and ambipolar escape of them to the discharge chamber walls. The approximation chosen permitted us to solve the balance equation and to obtain simple formulas for the reduced electric field. Our calculation data for the positive column in hydrogen agree well with experimental and theoretical data of other authors.


Corresponding author

Email address for correspondence:


Hide All
Al-Amin, S. A. J., Lucas, J. and Kucukarpaci, H. N. 1985 The ratio of radial diffusion coefficient to mobility for electrons in hydrogen, nitrogen and carbon monoxide at high E/N. J. Phys. D: Appl. Phys. 18, 2007.
Amemiya, H. 1990 Plasmas with negative ions-probe measurements and charge equilibrium. J. Phys. D: Appl. Phys. 23, 999.
Amorim, J., Baravia, G. and Ricard, A. 1995 Production of N, H, and NH active species in N2-H2 dc flowing discharges. Plasma Chem. Plasma Process. 15, 721.
Amorim, J., Loureiro, J., Baravian, G. and Touzeau, M. 1997 Experimental and theoretical study of dissociation in the positive column of a hydrogen glow discharge. J. Appl. Phys. 82, 2795.
Bacal, M. 2000 Photodetachment diagnostic techniques for measuring negative ion densities and temperatures in plasmas. Rev. Sci. Instrum. 71, 3981.
Bacal, M., Bruneteau, A. M., Graham, W. G., Hamilton, G. W. and Nachman, M. 1981 Pressure and electron temperature dependence of H-density in a hydrogen plasma. J. Appl. Phys. 52, 1247.
Budtz-Jørgensen, C. V., Kringhøj, P. and Bøttiger, J. 1999 The critical role of hydrogen for physical sputtering with Ar–H2 glow discharges. Surf. Coat. Technol. 116–119, 938.
Cicala, G., De Tommaso, E., Raino, A. C., Lebedev, Yu. A. and Shakhatov, V. A. 2009 Study of positive column of glow discharge in nitrogen by optical emission spectroscopy and numerical simulation. Plasma Sources Sci. Technol. 18, 025 032.
Drexel, H., Senn, G., Fiegele, T., Scheier, P., Stamatovic, A., Mason, N. J. and Mark, T. D. 2001 Dissociative electron attachment to hydrogen. J. Phys. B: At. Mol. Opt. Phys. 34, 1415.
Endo, M. and Walter, R. F. 2007 Gas Lasers. Boca Raton, FL: CRC Press, p. 3.
Golubovskii, Yu. B., Porokhova, I. A., Behnke, J. and Behnke, J. F. 1999 A comparison of kinetic and fluid models of the positive column of discharges in inert gases. J. Phys. D: Appl. Phys. 32, 456.
Gordiets, B., Ferreira, C. M., Pinheiro, M. J. and Ricard, A. 1998 Self-consistent kinetic model of low-pressure N2–H2 flowing discharges: I. Volume processes. Plasma Sources Sci. Technol. 7, 363.
Goyette, A. N., Jameson, W. B., Anderson, L. W. and Lawler, J. E. 1996 An experimental comparison of rotational temperature and gas kinetic temperature in a H2 discharge. J. Phys. D: Appl. Phys. 29, 1197.
Graham, W. G. 1995 The kinetics of negative hydrogen ions in discharges. Plasma Sources Sci. Technol. 4, 281.
Hassouba, M. A., Al-Naggar, H. I., Al-Naggar, N. M. and Wilke, C. 2006 Time series analysis of ionization waves in dc neon glow discharge. Phys. Plasmas 13, 073 504.
Kawamura, E. and Ingold, J. H. 2001 Particle in cell simulations of low pressure small radius positive column discharges. J. Phys. D: Appl. Phys. 34, 3150.
Lieberman, M. A. and Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing. Hoboken, New Jersey: Wiley.
Lisovskiy, V., Booth, J.-P., Landry, K., Douai, D., Cassagne, V. and Yegorenkov, V. 2006 Electron drift velocity in argon, nitrogen, hydrogen, oxygen and ammonia in strong electric fields determined from rf breakdown curves. J. Phys. D: Appl. Phys. 39, 660.
Lisovskiy, V. and Yegorenkov, V. 2014 In-depth treatment of discharge ignition data during undergraduate laboratory work. Eur. J. Phys. 35, 045 021.
Lisovskiy, V. A., Koval, V. A., Artushenko, E. P. and Yegorenkov, V. D. 2012 Validating the Goldstein–Wehner law for the stratified positive column of dc discharge in an undergraduate laboratory. Eur. J. Phys. 33, 1537.
Liu, H. and Dandy, D. S. 1995 Diamond Chemical Vapor Seposition: Nucleation and Early Growth Stages. Park Ridge, New Jersey: Noyes Publications, p. 27.
McDaniel, E. W. and Mason, E. A. 1973 The Mobility and Diffusion of Ions in Gases. New York: Wiley.
Naidu, M. S. and Prasad, A. N. 1968 The ratio of diffusion coefficient to mobility for electrons in nitrogen and hydrogen. Br. J. Appl. Phys. 1, 763.
Phelps, A. V. 1990 Cross sections and swarm coefficients for H+, H2+, H3+, H, H2, and H in H2 for Energies from 0.1 eV to 10 keV. J. Phys. Chem. Ref. Data 19, 653.
Qayyum, A., Ahmad, R., Ghauri, S. A., Waheed, A. and Zakaullah, M. 2006 Hydrogen Balmer-β and Balmer-γ emission profiles in an abnormal glow region of hydrogen plasma. Vacuum 80, 574.
Raizer, Y. P. 1991 Gas Discharge Physics. Berlin: Springer.
Rose, D. J. 1956 Townsend ionization coefficient for hydrogen and deuterium. Phys. Rev. 104, 273.
Roznerski, W. 1978 The ratio of lateral diffusion coefficient to mobility for electrons in hydrogen and nitrogen. J. Phys. D: Appl. Phys. 11, L197.
Roznerski, W. and Leja, K. 1980 The ratio of lateral diffusion coefficient to mobility for electrons in hydrogen and nitrogen at moderate E/N. J. Phys. D: Appl. Phys. 13, L181.
Roznerski, W. and Leja, K. 1984 Electron drift velocity in hydrogen, nitrogen, oxygen, carbon monoxide, carbon dioxide and air at moderate E/N. J. Phys. D: Appl. Phys. 17, 279.
Schottky, W. 1924a Wandstrome und Theorie der positiven Saule. Phys. Z. 25, 342.
Schottky, W. 1924b Diffusionstheorie der positiven Saule. Phys. Z. 25, 635.
Schottky, W. and Issendorff, J. 1925 Quasineutrale elektrische diffusion im ruhenden und stromenden gas. Z. Phys. 31, 163.
Townsend, J. S. 1915 Electricity in Gases. Oxford: Clarendon Press.
Uhrlandt, D. and Winkler, R. 1996 Radially inhomogeneous electron kinetics in the DC column plasma. J. Phys. D: Appl. Phys. 29, 115.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

Simple model of reduced electric field in ambipolar regime of dc discharge positive column in hydrogen

  • V. A. Lisovskiy (a1) (a2), E. P. Artushenko (a1) (a2) and V. D. Yegorenkov (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.