Skip to main content Accessibility help
×
Home

Separated spin evolution quantum hydrodynamics of degenerate electrons with spin–orbit interaction and extraordinary wave spectrum

  • Pavel A. Andreev (a1) and Mariya Iv. Trukhanova (a1)

Abstract

To consider the contribution of the spin–orbit interaction in the extraordinary wave spectrum we derive a generalization of the separate spin evolution quantum hydrodynamics. Applying the corresponding nonlinear Pauli equation we include the Fermi spin current contribution in the spin evolution. We find that the spectrum of extraordinary waves consists of three branches: two of them are well-known extraordinary waves and the third one is the spin-electron acoustic wave. A change of the extraordinary wave spectrum due to the spin–orbit interaction is also obtained.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Separated spin evolution quantum hydrodynamics of degenerate electrons with spin–orbit interaction and extraordinary wave spectrum
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Separated spin evolution quantum hydrodynamics of degenerate electrons with spin–orbit interaction and extraordinary wave spectrum
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Separated spin evolution quantum hydrodynamics of degenerate electrons with spin–orbit interaction and extraordinary wave spectrum
      Available formats
      ×

Copyright

Corresponding author

Email addresses for correspondence: andreevpa@physics.msu.ru, mar-tiv@yandex.ru

References

Hide All
Agarwal, A., Polini, M., Fazio, R. & Vignale, G. 2011 Persistent spin oscillations in a spin–orbit-coupled superconductor. Phys. Rev. Lett. 107, 077004.
Agarwal, A., Polini, M., Vignale, G. & Flatte, M. E. 2014 Long-lived spin plasmons in a spin-polarized two-dimensional electron gas. Phys. Rev. B 90, 155409.
An, Z., Liu, F. Q., Lin, Y. & Liu, C. 2012 The universal definition of spin current. Sci. Rep. 2, 388.
Andreev, P. A.2012 Quantum kinetics derivation as generalization of the quantum hydrodynamics method. arXiv:1212.0099.
Andreev, P. A. 2014 Exchange effects in Coulomb quantum plasmas: dispersion of waves in 2D and 3D quantum plasmas. Ann. Phys. 350, 198.
Andreev, P. A. 2015a Hydrodynamic and kinetic models for spin- $1/2$ electron–positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas. Phys. Plasmas 22, 062113.
Andreev, P. A. 2015b Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons. Phys. Rev. E 91, 033111.
Andreev, P. A. 2016a Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas. Phys. Plasmas 23, 012106.
Andreev, P. A. 2016b Spin-electron acoustic waves: the Landau damping and ion contribution in the spectrum. Phys. Plasmas 23, 062103.
Andreev, P. A. & Iqbal, Z. 2016 Rich eight-branch spectrum of the oblique propagating longitudinal waves in partially spin-polarized electron–positron–ion plasmas. Phys. Rev. E 93, 033209.
Andreev, P. A. & Ivanov, A. Y. 2015 Exchange Coulomb interaction in nanotubes: dispersion of Langmuir waves. Phys. Plasmas 22, 072101.
Andreev, P. A. & Kuz’menkov, L. S. 2007 On equations for the evolution of collective phenomena in fermion systems. Russian Phys. J. 50, 1251.
Andreev, P. A. & Kuz’menkov, L. S. 2009 The quantum hydrodynamics equation with the spin–current and spin–orbit interaction. Dyn. Complex Syst. (Dinamika slojnykh sistem) 3 (3), 3 (in Russian).
Andreev, P. A. & Kuzmenkov, L. S. 2011 Generation of waves by a neutron beam in a quantum plasma of nonzero spin. An influence of the spin–orbit interaction. In PIERS Proceedings, Marrakesh, Morocco, March 20–23, p. 1047.
Andreev, P. A. & Kuz’menkov, L. S. 2012 Waves of magnetic moment and generation of waves by neutron beam in quantum magnetized plasma. Intl J. Mod. Phys. B 26, 1250186.
Andreev, P. A. & Kuz’menkov, L. S. 2015a Waves of spin current in magnetized dielectrics. Intl J. Mod. Phys. B 29, 1550077.
Andreev, P. A. & Kuz’menkov, L. S. 2015b Oblique propagation of longitudinal waves in magnetized spin- $1/2$ plasmas: independent evolution of spin-up and spin-down electrons. Ann. Phys. 361, 278.
Andreev, P. A. & Kuz’menkov, L. S.2015c On equation of state for the ‘thermal’ part of the spin current: Pauli principle contribution in the spin wave spectrum in cold fermion system. arXiv:1510.03468.
Andreev, P. A. & Kuz’menkov, L. S. 2016a Separated spin-up and spin-down evolution of degenerated electrons in two-dimensional systems: Dispersion of longitudinal collective excitations in plane and nanotube geometry. Eur. Phys. Lett. 113, 17001.
Andreev, P. A. & Kuz’menkov, L. S. 2016b Surface spin-electron acoustic waves in magnetically ordered metals. Appl. Phys. Lett. 108, 191605.
Asenjo, F. A., Munoz, V., Valdivia, J. A. & Mahajan, S. M. 2011 A hydrodynamical model for relativistic spin quantum plasmas. Phys. Plasmas 18, 012107.
Asenjo, F. A., Zamanian, J., Marklund, M., Brodin, G. & Johansson, P. 2012 Semi-relativistic effects in spin- $1/2$ quantum plasmas. New J. Phys. 14, 073042.
Berestetskii, V. B., Lifshitz, E. M. & Pitaevskii, L. P. 1982 Quantum Electrodynamics, 2nd edn, vol. 4. Butterworth-Heinemann.
Brodin, G. & Marklund, M. 2007 Spin magnetohydrodynamics. New J. Phys. 9, 277.
Brodin, G., Misra, A. P. & Marklund, M. 2010 Spin contribution to the ponderomotive force in a plasma. Phys. Rev. Lett. 105, 105004.
Del Sorbo, D., Seipt, D., Blackburn, T. G., Thomas, A. G. R., Murphy, C. D., Kirk, J. G. & Ridgers, C. P. 2017 Spin polarization of electrons by ultraintense lasers. Phys. Rev. A 96, 043407.
Dixit, A., Hinschberger, Y., Zamanian, J., Manfredi, G. & Hervieux, P.-A. 2013 Lagrangian approach to the semirelativistic electron dynamics in the mean-field approximation. Phys. Rev. A 88, 032117.
Ekman, R., Asenjo, F. A. & Zamanian, J. 2017 Relativistic kinetic equation for spin- $1/2$ particles in the long-scale-length approximation. Phys. Rev. E 96, 023207.
Foldy, L. L. 1952 The electromagnetic properties of dirac particles. Phys. Rev. 87, 688.
Foldy, L. L. & Wouthuysen, S. A. 1950 On the Dirac theory of spin $1/2$ particles and its non-relativistic limit. Phys. Rev. 78, 29.
Giannini, V., Fernandez-Dominguez, A. I., Heck, S. C. & Maier, S. A. 2011 Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888.
Griffiths, D. J. 2012 Electromagnetic momentum. Am. J. Phys. 80, 7.
Hurst, J., Hervieux, P.-A. & Manfredi, G. 2017 Phase-space methods for the spin dynamics in condensed matter systems. Phil. Trans. R. Soc. Lond. A 375, 20160199.
Hurst, J., Hervieux, P.-A. & Manfredi, G. 2018 Spin current generation by ultrafast laser pulses in ferromagnetic nickel films. Phys. Rev. B 97, 014424.
Hussain, A., Stefan, M. & Brodin, G. 2014 Weakly relativistic quantum kinetic theory for electrostatic wave modes in magnetized plasmas. Phys. Plasmas 21, 032104.
Ivanov, A. Y., Andreev, P. A. & Kuz’menkov, L. S. 2014 Balance equations in semi-relativistic quantum hydrodynamics. Intl J. Mod. Phys. B 28, 1450132.
Ivanov, A. Y., Andreev, P. A. & Kuz’menkov, L. S. 2015 Langmuir waves in semi-relativistic spinless quantum plasmas. Prog. Theor. Exp. Phys. 2015, 063I02.
Koide, T. 2013 Spin-electromagnetic hydrodynamics and magnetization induced by spin-magnetic interaction. Phys. Rev. C 87, 034902.
Kuzmenkov, L. S. & Harabadze, D. E. 2004 Waves in systems of particles having an intrinsic magnetic moment (method of quantum hydrodynamics). Russ. Phys. J. 47, 437.
Kuz’menkov, L. S. & Maksimov, S. G. 1999 Quantum hydrodynamics of particle systems with Culomb interaction and quantum Bohm potential. Theor. Math. Phys. 118, 227.
Kuz’menkov, L. S., Maksimov, S. G. & Fedoseev, V. V. 2001a Microscopic quantum hydrodynamics of systems of fermions: part I. Theor. Math. Phys. 126, 110.
Kuz’menkov, L. S., Maksimov, S. G. & Fedoseev, V. V. 2001b Microscopic quantum hydrodynamics of systems of fermions: II. Theor. Math. Phys. 126, 212.
Landau, L. D. & Lifshitz, E. M. 1975 The Classical Theory of Fields. Butterworth-Heinemann.
Landau, L. D. & Lifshitz, E. M. 1977 Quantum Mechanics: Non-Relativistic Theory, 3rd edn, vol. 3. Pergamon Press.
Landau, L. D. & Lifshitz, E. M. 1980 Statistical Physics, 3rd edn, vol. 5. Butterworth-Heinemann.
Mahajan, S. M. & Asenjo, F. A. 2014 Hot fluids and nonlinear quantum mechanics. Intl J. Theoret. Phys. 54, 1435.
Mahajan, S. M. & Asenjo, F. A. 2016 A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave. Phys. Plasmas 23, 056301.
Margulis, A. D. & Marguli, VI. A. 1987 Plasma oscillations and zero sound in a degenerate spin-polarized electron system. Sov. Phys. JETP 66, 1028.
Marklund, M. & Brodin, G. 2007 Dynamics of spin- $1/2$ quantum plasmas. Phys. Rev. Lett. 98, 025001.
Mendonca, J. T. 2011 Wave kinetics of relativistic quantum plasmas. Phys. Plasmas 18, 062101.
Newton, T. D. & Wigner, E. P. 1949 Localized states for elementary systems. Rev. Mod. Phys. 21, 400.
Perez, F. 2009 Spin-polarized two-dimensional electron gas embedded in a semimagnetic quantum well: ground state, spin responses, spin excitations, and Raman spectrum. Phys. Rev. B 79, 045306.
Ryan, J. C. 1991 Collective excitations in a spin-polarized quasi-two-dimensional electron gas. Phys. Rev. B 43, 4499.
Shukla, P. K. & Eliasson, B. 2011 Nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83, 885.
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. 2015 Spin Hall effects. Rev. Mod. Phys. 87, 1213.
Stefan, M. & Brodin, G. 2013 Linear and nonlinear wave propagation in weakly relativistic quantum plasmas. Phys. Plasmas 20, 012114.
Strickland, M., Dexheimer, V. & Menezes, D. P. 2012 Bulk properties of a Fermi gas in a magnetic field. Phys. Rev. D 86, 125032.
Sun, Q. F. & Xie, X. C. 2005 Definition of the spin current: the angular spin current and its physical consequences. Phys. Rev. B 72, 245305.
Takabayasi, T. 1955a The vector representation of spinning particle in the quantum theory, I. Prog. Theor. Phys. 14, 283.
Takabayasi, T. 1955b Relativistic hydrodynamics equivalent to the Dirac equation. Prog. Theor. Phys. 13, 222.
Takabayasi, T. 1956a Hydrodynamical description of the Dirac equation. Nuovo Cimento 3, 233.
Takabayasi, T. 1956b Variational principle in the hydrodynamical formulation of the Dirac field. Phys. Rev. 102, 297.
Takabayasi, T. 1957 Relativistic hydrodynamics of the Dirac matter. Part I. General theory. Prog. Theor. Phys. Suppl. 4, 2.
Trukhanova, M. I. 2013a Quantum hydrodynamics approach to the research of quantum effects and vorticity evolution in spin quantum plasmas. Prog. Theor. Exp. Phys. 2013, 111I01.
Trukhanova, M. I. 2013b Effects of spin–orbital coupling on the propagation of whistler waves in the magnetized plasma. Eur. Phys. J. D 67, 32.
Trukhanova, M. I. 2015 Spin current evolution in the separated spin-up and spin-down quantum hydrodynamics. Phys. Lett. A 379, 2777.
Uzdensky, D. A. & Rightley, S. 2014 Plasma physics of extreme astrophysical environments. Rep. Prog. Phys. 77, 036902.
Zamanian, J., Stefan, M., Marklund, M. & Brodin, G. 2010 From extended phase space dynamics to fluid theory. Phys. Plasmas 17, 102109.
Zhu, J. & Ji, P. 2012 Dispersion relation and Landau damping of waves in high-energy density plasmas. Plasma Phys. Control. Fusion 54, 065004.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed