Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T16:17:44.273Z Has data issue: false hasContentIssue false

Rossby–Khantadze electromagnetic planetary vortical motions in the ionospheric E-layer

Published online by Cambridge University Press:  13 June 2011

T. D. KALADZE
Affiliation:
I. Vekua Institute of Applied Mathematics, Tbilisi State University, 2 University str., 0186 Tbilisi, Georgia (tamaz_kaladze@yahoo.com) Physics Department, GC University, Lahore 54000, Pakistan
L. V. TSAMALASHVILI
Affiliation:
I. Vekua Institute of Applied Mathematics, Tbilisi State University, 2 University str., 0186 Tbilisi, Georgia (tamaz_kaladze@yahoo.com)
L. Z. KAHLON
Affiliation:
Physics Department, GC University, Lahore 54000, Pakistan

Abstract

It is shown that in the earth's conductive ionospheric E-region, large-scale ultra low-frequency Rossby and Khantadze electromagnetic waves can propagate. Along with the prevalent effect of Hall conductivity for these waves, the latitudinal inhomogeneity of both the earth's angular velocity and the geomagnetic field becomes essential. Action of these effects leads to the coupled propagation of electromagnetic Rossby and Khantadze modes. Linear propagation properties of these waves are given in detail. It is shown that the waves lose the dispersing property for large values of wave numbers. Corresponding nonlinear solitary vortical structures are constructed. Conditions for such self-organization are given. It is shown that nonlinear large-scale vortices generate the stronger pulses of the geomagnetic field than the corresponding linear waves. Previous investigations are revised.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aburjania, G. D. and Chargazia, Kh. Z. 2007 Dynamics of the large-scale ULF electromagnetic wave structures in the ionosphere. J. Atmos. Sol.-Terr. Phys. 69, 2428.CrossRefGoogle Scholar
Aburjania, G. D. and Khantadze, A. G. 2002 Large-scale electromagnetic wave structures in the ionospheric E region. Geomagn. Aeronomy 42, 233.Google Scholar
Alperovich, L. S. and Fedorov, E. N. 2007 Hydromagnetic Waves in the Magnetosphere and the Ionosphere. Springer. Berlin, Heidelberg, New York, Hong Kong, London, Milan, Paris, Tokyo.CrossRefGoogle Scholar
Bauer, T. M., Baumjohann, W., Treumann, R. A., Sckopke, N. and Lühr, H. 1995 Low-frequency waves in the near-earth plasma sheet. J. Geophys. Res. 100, 9605.CrossRefGoogle Scholar
Burmaka, V. P. and Chernogor, L. F. 2004 Clustered-instrument studies of ionospheric wave disturbances accompanying rocket launches against the background of nonstationary natural processes. Geomagn. Aeronomy 44 (3), 518 (in Russian).Google Scholar
Burmaka, V. P., Lysenko, V. N., Chernogor, L. F. and Chernyak, Yu. V. 2006 Wave-like processes in the ionospheric F region that accompanied rocket launches from the Baikonur Site. Geomagn. Aeronomy 46, 742.CrossRefGoogle Scholar
Burmaka, V. P., Taran, L. F. and Chernogor, L. F. 2005 Results of investigations of the wave disturbances in the ionosphere by noncoherent scattering. Adv. Mod. Radiophysics 3, 4 (in Russian).Google Scholar
Cavalieri, D. J. 1976 Traveling planetary-scale waves in the E-region. J. Atmos. Terr. Phys. 38, 965.CrossRefGoogle Scholar
Cavalieri, D. J., Deland, R. J., Poterna, J. A. and Gavin, R. F. 1974 The correlation of VLF propagation variations with atmospheric planetary-scale waves. J. Atmos. Terr. Phys. 36, 561.CrossRefGoogle Scholar
Cheng, K. Y. and Huang, N. 1992 Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991. J. Geophys. Res. 97, 1695.CrossRefGoogle Scholar
Dokuchaev, V. P. 1959 Influence of the Earth's magnetic field on the ionospheric winds. Izvestia AN SSSR, Seria Geophysica 5, 783.Google Scholar
Fagundes, P. R., Pillat, V. G., Bolzan, M. J. A., Sahai, Y., Becker-Guedes, F., Abalde, J. R., Azanha, S. L. and Bittencourt, J. A. 2005 Observations of F layer electron density profiles modulated by planetary wave type oscillations in the equatorial ionospheric anomaly region. J. Geophys. Res. 110, A12302.CrossRefGoogle Scholar
Forbes, J. M. and Leveroni, S. 1992 Quasi 16-day oscillation in the ionosphere. Geophys. Res. Lett. 19, 981.CrossRefGoogle Scholar
Haykowicz, L. A. 1991 Global onset and propagation of large-scale traveling ionospheric disturbances as a result of the great storm of 13 March 1989. Planet. Space Sci. 39, 583.CrossRefGoogle Scholar
Hirooka, T. and Hirota, I. 1985 Normal mode Rossby waves observed in the upper stratosphere. Part II: second antisymmetric and symmetric modes of zonal wavenumbers 1 and 2. J. Atmos. Sci. 42, 536.2.0.CO;2>CrossRefGoogle Scholar
Horton, W. and Ichikawa, Y. 1996 Chaos and Structures in Nonlinear Plasmas. Hackensak, NJ: World ScientificCrossRefGoogle Scholar
Kaladze, T. D. 1998 Nonlinear vortical structures in the Earth's ionosphere. Phys. Scr. T75, 153.CrossRefGoogle Scholar
Kaladze, T. D. 1999 Magnetized Rossby waves in the Earth's ionosphere. Plasma Phys. Rep. 25, 284.Google Scholar
Kaladze, T. D. 2004 Planetary electromagnetic waves in the ionospheric E-layer. In: Proc. First Cairo Conf. Plasma Physics and Applications (CCPPA '03), Cairo, Egypt, 11–15 October 2003, (ed. Kunze, H.-J., El-Khalafawy, T. and Hegazy, H.), German-Egyptian Cooperation. Shriften des Forschungszentrums Jülich, Bilateral seminars of the International Bureau, 34, 68.Google Scholar
Kaladze, T. D., Aburjania, G. D., Kharshiladze, O. A, Horton, W. and Kim, Y.-H. 2004 Theory of magnetized Rossby waves in the ionospheric E layer. J. Geophys. Res. 109, A05302, doi: 10.1029/2003JA010049.CrossRefGoogle Scholar
Kaladze, T. D. and Horton, W. 2006 Synoptic-scale nonlinear stationary magnetized Rossby waves in the ionospheric E-layer. Plasma Phys. Rep. 32, 996.CrossRefGoogle Scholar
Kaladze, T. D., Pokhotelov, O. A., Sagdeev, R. Z., Stenflo, L. and Shukla, P. K. 2003 Planetary electromagnetic waves in the ionospheric E-layer. J. Atmos. Sol.-Terr. Phys. 65, 757.CrossRefGoogle Scholar
Kaladze, T. D. and Tsamalashvili, L. V. 1997 Solitary dipole vortices in the Earth's ionosphere. Phys. Lett. A 232, 269.CrossRefGoogle Scholar
Kaladze, T. D. and Tsamalashvili, L. V. 2001 Nonlinear Alfven-Rossby vortical structures in the earth's ionosphere. Phys. Lett. A 287, 137.CrossRefGoogle Scholar
Kaladze, T. D., Wu, D. J., Pokhotelov, O. A., Sagdeev, R. Z., Stenflo, L. and Shukla, P. K., 2007 Rossby-wave driven zonal flows in the ionospheric E-layer. J. Plasma Phys. 73, 131.CrossRefGoogle Scholar
Khantadze, A. G. 1986 Hydromagnetic gradient waves in dynamo region of the ionosphere. Bull. Acad. Sci. Georgian SSR 123, 69 (in Russian).Google Scholar
Khantadze, A. G. 1999 On the electromagnetic planetary waves in the Earth's ionosphere. J. Georgian Geophys. Soc. B, Phys. Atmos. Ocean and Cosmic Rays 4, 125.Google Scholar
Khantadze, A. G. 2001 A new type of natural oscillations in conducting atmosphere. Dokl. Earth Sci. 376, 93.Google Scholar
Khantadze, A. G., Jandieri, G. V., Ishimaru, A., Kaladze, T. D. and Diasamidze, Zh. M. 2010 Electromagnetic oscillations of the Earth's upper atmosphere (review). Ann. Geophyscae 28, 1387.CrossRefGoogle Scholar
Larichev, V. D. and Reznik, G. M. 1976 On two-dimensional solitary Rossby waves. Dokl. Akad. Nauk SSSR 231, 1077 (in Russian).Google Scholar
Lastovicka, J. 1997 Observations of tides and planetary waves in the atmosphere-ionosphere system. Adv. Space Res. 20, 1209.CrossRefGoogle Scholar
Lawrence, A. R. and Jarvis, M. J. 2003 Simultaneous observations of planetary waves from 30 to 220 km. J. Atmos. Sol.-Terr. Phys. 65, 765.CrossRefGoogle Scholar
Liperovsky, V. A., Pokhotelov, O. A. and Shalimov, S. L. 1992 Ionospheric Earthquake Precursos. Moscow: Nauka.Google Scholar
Manson, A. H., Meek, C. E. and Gregory, J. B. 1981 Winds and waves (10 min–30 day) in the mesosphere and lower thermosphere at Saskatoon (52°N, 107°W, L = 4.3) during the year, October 1979 to July 1980. J. Geophys. Res. 86, 9615.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer. Berlin.CrossRefGoogle Scholar
Petviashvili, V. I. and Pokhotelov, O. A. 1992 Solitary Waves in Plasmas and in the Atmosphere. Gordon and Breach Science Publishers. Philadelphia.Google Scholar
Pokhotelov, O. A., Khruschev, V., Parrot, M., Senchenkov, S. and Pavlenko, V. P. 2001 Ionospheric Alfven resonator revisited: feedback instability. J. Geophys. Res. 106, 25813.CrossRefGoogle Scholar
Pokhotelov, O. A., Parrot, M., Fedorov, E. N., Pilipenko, V. A., Surkov, V. V. and Gladychev, V. A. 1995 Response of the ionosphere to natural and man-made acoustic sources. Ann. Geophys. 13, 1197.CrossRefGoogle Scholar
Pokhotelov, O. A., Stenflo, L. and Shukla, P. K. 1996 Nonlinear structures in the Earth's magnetosphere and atmosphere. Plasma Phys. Rep. 22, 852.Google Scholar
Randel, W. J. 1987 A study of planetary waves in the southern winter troposphere and stratosphere. Part I: wave structure and vertical propagation. J. Atmos. Sci. 44, 917.2.0.CO;2>CrossRefGoogle Scholar
Satoh, M., 2004 Atmospheric Circulation Dynamics and General Circulation Models. Springer. Berlin.Google Scholar
Shaefer, L. D., Rock, D. R., Lewis, J. P. and Warshaw, S. I. 1999 Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations. Report no. UCRL-ID-133240, Lawrence Livermore Laboratory, Livermore, CA, USA.Google Scholar
Sharadze, Z. S. 1991 Phenomena in the middle-latitude ionosphere. PhD Thesis, Moscow.Google Scholar
Sharadze, Z. S., Japaridze, G. A., Kikvilashvili, G. B. and Liadze, Z. L. 1988 Wavy disturbances of non-acoustical nature in the middle-latitude ionosphere. Geomagn. Aeronomy 28, 446 (in Russian).Google Scholar
Sharadze, Z. S., Mosashvili, N. V., Pushkova, G. N. and Yudovich, L. A., 1989 Long-period-wave disturbances in E-region of the ionosphere. Geoamgnetism and Aeronomy 29, 1032 (in Russian).Google Scholar
Smith, A. K. 1997 Stationary planetary waves in upper mesospheric winds. J. Atmos. Sci. 54, 2129.2.0.CO;2>CrossRefGoogle Scholar
Sorokin, V. M. 1988 Wavy processes in the ionosphere related to the geomagnetic field. Izvestia Vysshikh Uchebnikh Zavedenii, Radiofizikaofis. 31, 1169 (in Russian).Google Scholar
Stepanyants, Y. A. and Fabrikant, A. L. 1992 Features of the Cherenkov emission of drift waves in hydrodynamics and in a plasma. Sov. Phys. JETP 75, 818.Google Scholar
Tolstoy, I. 1967 Hydromagnetic gradient waves in the ionosphere. J. Geophys. Res. 72, 1435.CrossRefGoogle Scholar
Williams, C. R. and Avery, S. K. 1992 Analysis of long-period waves using the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska. J. Geophys. Res. 97, 20855.CrossRefGoogle Scholar
Zhou, Q. H., Sulzer, M. P. and Tepley, C. A. 1997 An analysis of tidal and planetary waves in the neutral winds and temperature observed at low-latitude E-region heights. J. Geophys. Res. 102, 11491.CrossRefGoogle Scholar