Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-19T05:11:14.901Z Has data issue: false hasContentIssue false

The role of collisions on mode competition between the two-stream and Weibel instabilities*

Published online by Cambridge University Press:  08 January 2014

K. A. HUMPHREY
Affiliation:
SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK (bob.bingham@stfc.ac.uk)
R. M. G. M. TRINES
Affiliation:
STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, UK
D. C. SPEIRS
Affiliation:
SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK (bob.bingham@stfc.ac.uk)
P. NORREYS
Affiliation:
STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, UK
R. BINGHAM
Affiliation:
SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG, UK (bob.bingham@stfc.ac.uk) STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0QX, UK

Abstract

We present results from numerical simulations conducted to investigate a potential method for realizing the required fusion fuel heating in the fast ignition scheme to achieving inertial confinement fusion. A comparison will be made between collisionless and collisional particle-in-cell simulations of the relaxation of a non-thermal electron beam through the two-stream instability. The results presented demonstrate energy transfer to the plasma ion population from the laser-driven electron beam via the nonlinear wave–wave interaction associated with the two-stream instability. Evidence will also be provided for the effects of preferential damping of competing instabilities such as the Weibel mode found to be detrimental to the ion heating process.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper is dedicated to the memory of Padma Shukla a dear friend and collaborator.

References

Bret, A. and Deutsch, C. 2005 Phys. Plasmas 12, 0872704.Google Scholar
Bret, A., Gremillet, L., Bénisti, D. and Lefebvre, E. 2008 Phys. Rev, Lett. 100, 205008.CrossRefGoogle Scholar
Deutsch, C. 2003 Eur. Phys. Appl. Phys. 24, 95.CrossRefGoogle Scholar
Fonseca, R. A., Silva, L. O., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., Mori, W. B., Deng, S., Lee, S. and Katsouleas, T. 2002 LNCS 2331.Google Scholar
Key, M. H. 2007 Phys. Plasmas 14, 055502.CrossRefGoogle Scholar
Malkin, V. M. and Fisch, N. J. 2002 Phys. Rev. Lett. 89, 125004.CrossRefGoogle Scholar
Mendonca, J. T. and Bingham, R. 2002 Phys. Plasmas 9 (6), 2604.CrossRefGoogle Scholar
Mendonca, J. T., Norreys, P., Bingham, R. and Davies, J. R. 2005 Phys. Rev. Lett. 94, 245002.CrossRefGoogle Scholar
Sircombe, N. J., Bingham, R., Sherlock, M., Mendonça, T. and Norreys, P. 2008 Plasma Phys. Control. Fusion 50, 065005.CrossRefGoogle Scholar
Bludman, S. A., Watson, K. M. and Rosenbluth, M. N. 1960 Phys. Fluids 3, 747.CrossRefGoogle Scholar