Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.
      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Ripple modifications to alpha transport in tokamaks – CORRIGENDUM
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Ripple modifications to alpha transport in tokamaks – CORRIGENDUM
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Ripple modifications to alpha transport in tokamaks – CORRIGENDUM
        Available formats
        ×
Export citation

Numerical coefficients are incorrect at the end of § 8 and in two places in the summary in § 9 of Catto (2018). The material before (8.39) is unaffected. To evaluate the pitch angle integral in (8.39), $\unicode[STIX]{x1D712}=\unicode[STIX]{x1D702}\sqrt{2k\ell n(\sqrt{2k})}$ with $\unicode[STIX]{x1D702}=(1-\unicode[STIX]{x1D705})/8$ should have been used. And on the right-hand side of (8.40) there is a $4\unicode[STIX]{x03C0}$ missing in the denominator. The overall effect is to increase the size of the coefficients of the fluxes and diffusivities by $16/\unicode[STIX]{x03C0}$ and to remove the 64 from all $\ell n(\sqrt{2k\ell n(\sqrt{2k})})$ and $\ell n(\sqrt{2k_{0}\ell n(\sqrt{2k_{0}})})$ terms. Correcting these errors (8.39), (8.40), (8.42) and (8.43) become as follows:

(8.39) $$\begin{eqnarray}\displaystyle & & \displaystyle Re\left\langle \sin \unicode[STIX]{x1D717}\text{e}^{-\text{i}\unicode[STIX]{x1D717}}\int _{B_{0}/\underset{B}{\frown }}^{B_{0}/B}\,\text{d}\unicode[STIX]{x1D706}\frac{\unicode[STIX]{x1D706}}{\unicode[STIX]{x1D709}}[\text{e}^{-(1-\text{i})\unicode[STIX]{x1D702}\sqrt{2k\ell n(\sqrt{2k})}}-1]\right\rangle \nonumber\\ \displaystyle & & \displaystyle \quad \simeq -\frac{\sqrt{2\unicode[STIX]{x1D6FF}}}{\unicode[STIX]{x03C0}}\,Re\left\{\text{i}\int _{0}^{1}\text{d}\unicode[STIX]{x1D705}\unicode[STIX]{x1D705}[\text{e}^{-(1-\text{i})\unicode[STIX]{x1D702}\sqrt{2k\ell n(\sqrt{2k})}}-1]\ln \left(\frac{1}{\unicode[STIX]{x1D702}}\right)\right\}\nonumber\\ \displaystyle & & \displaystyle \quad \simeq -\frac{8\sqrt{\unicode[STIX]{x1D6FF}}\ell n[\sqrt{2k\ell n(\sqrt{2k})}]}{\unicode[STIX]{x03C0}\sqrt{k\ell n(\sqrt{2k})}}\,Re\left[\text{i}\int _{0}^{\infty }\text{d}\unicode[STIX]{x1D712}\text{e}^{-(1-\text{i})\unicode[STIX]{x1D712}}\right]\nonumber\\ \displaystyle & & \displaystyle \quad =4\sqrt{\unicode[STIX]{x1D6FF}}\frac{\ell n[\sqrt{2k\ell n(\sqrt{2k})}]}{\unicode[STIX]{x03C0}\sqrt{k\ell n(\sqrt{2k})}},\end{eqnarray}$$
(8.40) $$\begin{eqnarray}\displaystyle & \displaystyle \int _{0}^{v_{0}}\text{d}vv^{9/2}(Mv^{2}/2)^{d}\frac{\ell n[\sqrt{2k\ell n(\sqrt{2k})}]}{\sqrt{\ell n(\sqrt{2k})}}\frac{\unicode[STIX]{x2202}f_{s}}{\unicode[STIX]{x2202}\unicode[STIX]{x1D713}}\simeq \frac{v_{0}^{5/2}(Mv_{0}^{2}/2)^{d}\ell n[\sqrt{2k_{0}\ell n(\sqrt{2k_{0}})}]}{2\unicode[STIX]{x03C0}(5+4d)\sqrt{\ell n(\sqrt{2k_{0}})}\ell n(v_{0}/v_{c})}\frac{\unicode[STIX]{x2202}n_{s}}{\unicode[STIX]{x2202}\unicode[STIX]{x1D713}}, & \displaystyle \nonumber\\ \displaystyle & & \displaystyle\end{eqnarray}$$
(8.42) $$\begin{eqnarray}\displaystyle & \displaystyle \unicode[STIX]{x1D6E4}_{d}^{\sqrt{\unicode[STIX]{x1D708}}}\simeq -\frac{\unicode[STIX]{x1D700}^{2}B_{0}^{2}v_{\unicode[STIX]{x1D706}}^{3/2}v_{0}^{5/2}(Mv_{0}^{2}/2)^{d}\ell n[\sqrt{2k_{0}\ell n(\sqrt{2k_{0}})}]}{8\unicode[STIX]{x03C0}(5+4d)q^{1/2}\unicode[STIX]{x1D6FA}_{0}^{2}\unicode[STIX]{x1D714}\sqrt{\unicode[STIX]{x1D714}\unicode[STIX]{x1D70F}_{s}\ell n(2k_{0})}\ell n(v_{0}/v_{c})}\frac{\unicode[STIX]{x2202}n_{s}}{\unicode[STIX]{x2202}\unicode[STIX]{x1D713}}, & \displaystyle\end{eqnarray}$$
(8.43) $$\begin{eqnarray}\displaystyle & \displaystyle D_{0}^{\sqrt{\unicode[STIX]{x1D708}}}\simeq \frac{(qv_{\unicode[STIX]{x1D706}}/v_{0})^{3/2}(\unicode[STIX]{x1D70C}_{0}v_{0}/R)^{2}\ell n[\sqrt{k_{0}\ell n(2k_{0})}]}{40\unicode[STIX]{x03C0}\unicode[STIX]{x1D714}\sqrt{\unicode[STIX]{x1D714}\unicode[STIX]{x1D70F}_{s}\ell n(2k_{0})}\ell n(v_{0}/v_{c})}. & \displaystyle\end{eqnarray}$$

In addition, the erroneous $\unicode[STIX]{x1D70F}_{s}$ has been removed from the numerator of (8.42). These errors in numerical coefficients alter (9.3) and (9.4) which become

(9.3) $$\begin{eqnarray}\frac{\unicode[STIX]{x1D714}\unicode[STIX]{x1D70F}_{s}}{q}\sim \left[\frac{\ell n(\sqrt{k_{0}\ell n(2k_{0})})}{1.8\sqrt{\ell n(2k_{0})}}\right]^{2/3},\end{eqnarray}$$

and

(9.4) $$\begin{eqnarray}\frac{\unicode[STIX]{x1D714}R}{qv_{\unicode[STIX]{x1D706}}}\gg \left[\frac{\ell n(\sqrt{k_{0}\ell n(2k_{0})})}{40\unicode[STIX]{x03C0}\ell n(v_{0}/v_{c})\sqrt{\ell n(2k_{0})}}\right]^{2/3}\left(\frac{\unicode[STIX]{x1D70C}_{0}}{a_{\unicode[STIX]{x1D6FC}}}\right)^{4/3}\left(\frac{v_{0}\unicode[STIX]{x1D70F}_{s}}{R}\right)^{1/3}.\end{eqnarray}$$

Acknowledgement

Work supported by the US Department of Energy grants DE-FG02-91ER-54109 at MIT.

Reference

Catto, P. J. 2018 Ripple modifications to alpha transport in tokamaks. J. Plasma Phys. 84, 905840508 (39 pp).