Skip to main content Accessibility help
×
Home

Relative field-line helicity in bounded domains

  • Anthony R. Yeates (a1) and Marcus H. Page (a1)

Abstract

Models for astrophysical plasmas often have magnetic field lines that leave the boundary rather than closing within the computational domain. Thus, the relative magnetic helicity is frequently used in place of the usual magnetic helicity, so as to restore gauge invariance. We show how to decompose the relative helicity into a relative field-line helicity that is an ideal-magnetohydrodynamic invariant for each individual magnetic field line, and vanishes along any field line where the original field matches the reference field. Physically, this relative field-line helicity is a magnetic flux, whose specific definition depends on the gauge of the reference vector potential on the boundary. We propose a particular ‘minimal’ gauge that depends only on the reference field and minimises this boundary contribution, so as to reveal topological information about the original magnetic field. We illustrate the effect of different gauge choices using the Low–Lou and Titov–Démoulin models of solar active regions. Our numerical code to compute appropriate vector potentials and relative field-line helicity in Cartesian domains is open source and freely available.

Copyright

Corresponding author

Email address for correspondence: anthony.yeates@durham.ac.uk

References

Hide All
Arnold, V. I. 1986 The asymptotic Hopf invariant and its applications. Sel. Math. Sov. 5, 327345.
Barnes, D. C. 1988 Mechanical injection of magnetic helicity. Phys. Fluids 31, 22142220.
Berger, M. A. 1984 Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30, 79104.
Berger, M. A. 1988 An energy formula for nonlinear force-free magnetic fields. Astron. Astrophys. 201, 355361.
Berger, M. A. & Field, G. B. 1984 The topological properties of magnetic helicity. J. Fluid Mech. 147, 133148.
Berger, M. A. & Ruzmaikin, A. 2000 Rate of helicity production by solar rotation. J. Geophys. Res. 105, 1048110490.
Browning, P. K. 1988 Helicity injection and relaxation in a solar-coronal magnetic loop with a free surface. J. Plasma Phys. 40, 263280.
Cheung, M., Schüssler, M. & Moreno-Insertis, F. 2005 3D magneto-convection and flux emergence in the photosphere. In Chromospheric and Coronal Magnetic Fields (ed. Innes, D. E., Lagg, A. & Solanki, S. K.), Special Publication, vol. 596, p. 54.1. ESA.
Del Sordo, F., Candelaresi, S. & Brandenburg, A. 2010 Magnetic-field decay of three interlocked flux rings with zero linking number. Phys. Rev. E 81 (3), 036401.
Démoulin, P. & Pariat, E. 2009 Modelling and observations of photospheric magnetic helicity. Adv. Space Res. 43, 10131031.
DeVore, C. R. 2000 Magnetic helicity generation by solar differential rotation. Astrophys. J. 539, 944953.
Dixon, A. M., Berger, M. A., Priest, E. R. & Browning, P. K. 1989 A generalization of the Woltjer minimum-energy principle. Astron. Astrophys. 225, 156166.
Finn, J. M. & Antonsen, T. M. Jr 1985 Magnetic helicity: what is it and what is it good for? Comments Plasma Phys. Control. Fusion 9 (3), 111126.
Hornig, G.2006 A universal magnetic helicity integral. ArXiv Astrophysics e-prints, arXiv:astro-ph/0606694.
Longcope, D. W. & Malanushenko, A. 2008 Defining and calculating self-helicity in coronal magnetic fields. Astrophys. J. 674, 11301143.
Low, B. C. & Lou, Y. Q. 1990 Modeling solar force-free magnetic fields. Astrophys. J. 352, 343352.
Lowder, C. & Yeates, A. 2017 Magnetic flux rope identification and characterization from observationally driven solar coronal models. Astrophys. J. 846, 106.
Mackay, D. H., Green, L. M. & van Ballegooijen, A. 2011 Modeling the dispersal of an active region: quantifying energy input into the corona. Astrophys. J. 729, 97.
Magara, T. 2008 Emergence of a partially split flux tube into the solar atmosphere. Publ. Astron. Soc. Japan 60, 809826.
Malanushenko, A., Longcope, D. W., Fan, Y. & Gibson, S. E. 2009 Additive self-helicity as a kink mode threshold. Astrophys. J. 702, 580592.
Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117129.
Moraitis, K., Tziotziou, K., Georgoulis, M. K. & Archontis, V. 2014 Validation and benchmarking of a practical free magnetic energy and relative magnetic helicity budget calculation in solar magnetic structures. Solar Phys. 289, 44534480.
Pariat, E., Leake, J. E., Valori, G., Linton, M. G., Zuccarello, F. P. & Dalmasse, K. 2017 Relative magnetic helicity as a diagnostic of solar eruptivity. Astron. Astrophys. 601, A125.
Pariat, E., Valori, G., Démoulin, P. & Dalmasse, K. 2015 Testing magnetic helicity conservation in a solar-like active event. Astron. Astrophys. 580, A128.
Pontin, D. I., Wilmot-Smith, A. L., Hornig, G. & Galsgaard, K. 2011 Dynamics of braided coronal loops. II. Cascade to multiple small-scale reconnection events. Astron. Astrophys. 525, A57.
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1992 Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press.
Prior, C. & Yeates, A. R. 2014 On the helicity of open magnetic fields. Astrophys. J. 787, 100.
Russell, A. J. B., Yeates, A. R., Hornig, G. & Wilmot-Smith, A. L. 2015 Evolution of field line helicity during magnetic reconnection. Phys. Plasmas 22 (3), 032106.
Rust, D. M. 1997 Helicity conservation. In Coronal Mass Ejections (ed. Crooker, N., Joselyn, J. A. & Feynman, J.), Geophysical Monograph Series, vol. 99, pp. 119125. American Geophysical Union.
Sturrock, Z., Hood, A. W., Archontis, V. & McNeill, C. M. 2015 Sunspot rotation. I. A consequence of flux emergence. Astron. Astrophys. 582, A76.
Titov, V. S. & Démoulin, P. 1999 Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707720.
Valori, G., Pariat, E., Anfinogentov, S., Chen, F., Georgoulis, M. K., Guo, Y., Liu, Y., Moraitis, K., Thalmann, J. K. & Yang, S. 2016 Magnetic helicity estimations in models and observations of the solar magnetic field. Part I: finite volume methods. Space Sci. Rev. 201, 147200.
Woltjer, L. 1958 A theorem on force-free magnetic fields. Proc. Natl Acad. Sci. 44, 489491.
Yang, S., Büchner, J., Santos, J. C. & Zhang, H. 2013 Evolution of relative magnetic helicity: method of computation and its application to a simulated solar corona above an active region. Solar Phys. 283, 369382.
Yang, S. & Zhang, H. 2012 Large-scale magnetic helicity fluxes estimated from MDI magnetic synoptic charts over the solar cycle 23. Astrophys. J. 758, 61.
Yardley, S. L., Mackay, D. H. & Green, L. M. 2018 Simulating the coronal evolution of AR 11437 using SDO/HMI magnetograms. Astrophys. J. 852, 82.
Yeates, A. R. & Hornig, G. 2011 A generalized flux function for three-dimensional magnetic reconnection. Phys. Plasmas 18 (10), 102118.
Yeates, A. R. & Hornig, G. 2013 Unique topological characterization of braided magnetic fields. Phys. Plasmas 20 (1), 012102.
Yeates, A. R. & Hornig, G. 2014 A complete topological invariant for braided magnetic fields. J. Phys.: Conf. Ser. 544, 012002.
Yeates, A. R. & Hornig, G. 2016 The global distribution of magnetic helicity in the solar corona. Astron. Astrophys. 594, A98.
Yee, K. 1966 Numerical solution of inital boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302307.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Relative field-line helicity in bounded domains

  • Anthony R. Yeates (a1) and Marcus H. Page (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed