Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-20T03:48:52.425Z Has data issue: false hasContentIssue false

Progress of open systems at Budker Institute of Nuclear Physics

Published online by Cambridge University Press:  03 May 2024

P.A. Bagryansky*
Affiliation:
Budker Institute of Nuclear Physics SB RAS, Novosibirsk, 630090 Russia
*
Email address for correspondence: p.a.bagryansky@inp.nsk.su

Abstract

This paper is based on a report at the 2nd International Fusion Plasma Conference & 13th International Conference on Open Magnetic Systems for Plasma Confinement (iFPC & OS 2023), August 21–25, 2023, Busan, Korea and provides a brief overview of the status of work at the Budker Institute on the study of hot plasma confinement in open-type magnetic traps with a linear axisymmetric configuration. The main attention is paid to key problems: magnetohydrodynamics (MHD) stability in regimes with extremely high relative pressure, longitudinal electronic thermal conductivity, stability with respect to the development of kinetic modes and transverse transport. This paper provides an overview of the methods we are developing to address these problems, the experimental and theoretical results achieved and plans for future development. The last section of the article provides brief information about the preliminary design of the gas-dynamic multiple-mirror trap device, the development of which has been completed.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, I.S., Gospodchikov, E.D., Shaposhnikov, R.A. & Shalashov, A.G. 2019 Effect of ion acceleration on a plasma potential profile formed in the expander of a mirror trap. Nucl. Fusion 59 (10), 106004.CrossRefGoogle Scholar
Astrelin, V.T., Burdakov, A.V. & Postupaev, V.V. 1998 Generation of ion-acoustic waves and suppression of heat transport during plasma heating by an electron beam. Plasma Phys. Rep. 24 (5), 414.Google Scholar
Bagryansky, P.A., Akhmetov, T.D., Chernoshtanov, I.S., Deichuli, P.P., Ivanov, A.A., Lizunov, A.A., Maximov, V.V., Mishagin, V.V., Murakhtin, S.V., Pinzhenin, E.I., et al. 2016 Status of the experiment on magnetic field reversal at BINP. In AIP Conference Proceedings, vol. 1771. AIP Publishing.CrossRefGoogle Scholar
Bagryansky, P.A., Anikeev, A.V., Denisov, G.G., Gospodchikov, E.D., Ivanov, A.A., Lizunov, A.A., Kovalenko, Y. V, Malygin, V.I., Maximov, V.V., Korobeinikova, O.A., et al. 2015 a Overview of electron cyclotron resonance plasma heating experiment in the gas-gynamic trap magnetic mirror. Nucl. Fusion 55 (5), 053009.CrossRefGoogle Scholar
Bagryansky, P.A., Beklemishev, A.D. & Postupaev, V.V. 2019 Encouraging results and new ideas for fusion in linear traps. J. Fusion Energy 38, 162181.CrossRefGoogle Scholar
Bagryansky, P.A., Ivanov, A.A., Kruglyakov, E.P., Kudryavtsev, A.M., Tsidulko, Y..A., Andriyash, A.V., Lukin, A.L. & Zouev, Y.N. 2004 Gas dynamic trap as high power 14 MeV neutron source. Fusion Engng Des. 70 (1), 1333.CrossRefGoogle Scholar
Bagryansky, P.A., Shalashov, A.G., Gospodchikov, E.D., Lizunov, A.A., Maximov, V.V., Prikhodko, V.V., Soldatkina, E.I., Solomakhin, A.L. & Yakovlev, D.V. 2015 b Threefold increase of the bulk electron temperature of plasma discharges in a magnetic mirror device. Phys. Rev. Lett. 114 (20), 205001.CrossRefGoogle Scholar
Beklemishev, A.D. 2016 a Diamagnetic ‘bubble’ equilibria in linear traps. Phys. Plasmas 23 (8).CrossRefGoogle Scholar
Beklemishev, A.D. 2016 b Radial and axial transport in trap sections with helical corrugation. In AIP Conference Proceedings, vol. 1771. AIP Publishing.CrossRefGoogle Scholar
Beklemishev, A.D., Bagryansky, P.A., Chaschin, M.S. & Soldatkina, E.I. 2010 Vortex confinement of plasmas in symmetric mirror traps. Fusion Sci. Technol. 57 (4), 351360.CrossRefGoogle Scholar
Berendeev, E.A., Timofeev, I.V. & Kurshakov, V.A. 2024 Energy and charge conserving semi-implicit particle-in-cell model for simulations of high-pressure plasmas in magnetic traps. Comput. Phys. Commun. 295, 109020.CrossRefGoogle Scholar
Budker, G.I., Mirnov, V.V. & Ryutov, D.D. 1971 Magnetic field corrugation effect on the expansion and cooling of a dense plasma. JETP Lett. 14, 212215.Google Scholar
Burdakov, A.V. & Postupaev, V.V. 2018 Multiple-mirror trap: a path from budker magnetic mirrors to linear fusion reactor. Phys. Uspekhi 61 (6), 582.CrossRefGoogle Scholar
Chernoshtanov, I.S. 2022 Collisionless particle dynamics in diamagnetic trap. Plasma Phys. Rep.48 (2), 7990.CrossRefGoogle Scholar
Ioffe, M.S., Kanaev, B.I., Pastukhov, V.P. & Iushmanov, E.E. 1974 Stabilization of cone instability of collisional plasma in a mirror trap. Zh. Eksp. Teor. Fiz. 67, 21452156.Google Scholar
Ivanov, A.A. & Prikhodko, V.V. 2013 Gas-dynamic trap: an overview of the concept and experimental results. Plasma Phys. Control. Fusion 55 (6), 063001.CrossRefGoogle Scholar
Kanaev, B.I. 1979 Stabilization of drift loss-cone instability (DCI) by addition of cold ions. Nucl. Fusion 19 (3), 347.CrossRefGoogle Scholar
Kanaev, B.I. & Yushmanov, E.E. 1975 Investigation of instability of a collision plasma in a mirror trap. Sov. J. Expl Theor. Phys. 40, 290.Google Scholar
Konkashbaev, I.K., Landman, I.S. & Ulinich, F.R. 1978 Possibility of diminishing the electron heat flux from open traps. Zh. Eksp. Teor. Fiz. 74, 956964.Google Scholar
Kotelnikov, I.A. & Chernoshtanov, I.S. 2018 Isotopic effect in microstability of electrostatic oscillations in magnetic mirror traps. Phys. Plasmas 25 (8).CrossRefGoogle Scholar
Kotelnikov, I.A., Chernoshtanov, I.S. & Prikhodko, V.V. 2017 Electrostatic instabilities in a mirror trap revisited. Phys. Plasmas 24 (12).CrossRefGoogle Scholar
Kotelnikov, I., Prikhodko, V. & Yakovlev, D. 2023 Wall stabilization of high-beta anisotropic plasmas in an axisymmetric mirror trap. Nucl. Fusion 63 (6), 066027.CrossRefGoogle Scholar
Lizunov, A.A., Den Hartog, D.J., Donin, A.S., Ivanov, A.A. & Prikhodko, V.V. 2011 Note: multi-point measurement of $|{\rm b}|$ in the gas-dynamic trap with a spectral motional stark effect diagnostic. Rev. Sci. Instrum. 82 (8).CrossRefGoogle ScholarPubMed
Lizunov, A., Donin, A. & Savkin, V. 2013 Note: spectral motional stark effect diagnostic for measurement of magnetic fields below 0.3t. Rev. Sci. Instrum. 84 (8).CrossRefGoogle Scholar
Logan, B.G., Lichtenberg, A.J., Lieberman, M.A. & Makhijani, A. 1972 Multiple-mirror confinement of plasmas. Phys. Rev. Lett. 28 (3), 144.CrossRefGoogle Scholar
Marshall, J. 1960 Performance of a hydromagnetic plasma gun. Phys. Fluids 3 (1), 134135.CrossRefGoogle Scholar
Mirnov, V.V. & Ryutov, D.D. 1979 Linear gasdynamic system for plasma confinement. Sov. Tech. Phys. Lett. 5, 279280.Google Scholar
Pincosy, P.A. & Turner, W.C. 1987 Development of low-energy beams for fueling the central cell of a tandem mirror. Rev. Sci. Instrum. 58 (9), 15761588.CrossRefGoogle Scholar
Post, R.F. 1958 In Peaceful Uses of Atomic Energy (Proc. 2nd Int. Conf. Geneva, 1958), Vol. 32, p. 245, UN, New York.Google Scholar
Post, R.F. 1987 The magnetic mirror approach to fusion. Nucl. Fusion 27 (10), 1579.CrossRefGoogle Scholar
Postupaev, V.V., Batkin, V.I., Burdakov, A.V., Burmasov, V.S., Ivanov, I.A., Kuklin, K.N., Lykova, Y. A, Melnikov, N.A., Mekler, K.I., Nikishin, A.V., et al. 2022 Start of experiments in the design configuration of the gol-nb multiple-mirror trap. Nucl. Fusion 62 (8), 086003.CrossRefGoogle Scholar
Prikhodko, V.V., Bagryansky, P.A., Beklemishev, A.D., Kolesnikov, E.Y., Kotelnikov, I.A., Maximov, V.V., Pushkareva, A.N., Soldatkina, E.I., Tsidulko, Y.A. & Zaytsev, K.V. 2011 Low-frequency oscillations of plasma in the gas dynamic trap. Fusion Sci. Technol.59 (1T), 9497.CrossRefGoogle Scholar
Rosenbluth, M.N., Krall, N.A. & Rostoker, N. 1962 Finite larmor radius stabilization of ‘weakly’ unstable confined plasmas. Tech. Rep. General Dynamics Corporation.Google Scholar
Ryutov, D. 2004 Axial electron heat loss from mirror devices revisited. Tech. Rep. Lawrence Livermore National Lab (LLNL).Google Scholar
Simonen, T.C., Anikeev, A., Bagryansky, P., Beklemishev, A., Ivanov, A., Lizunov, A., Maximov, V., Prikhodko, V. & Tsidulko, Y. 2010 High beta experiments in the gdt axisymmetric magnetic mirror. J. Fusion Energy 29, 558560.CrossRefGoogle Scholar
Skovorodin, D.I. 2019 Suppression of secondary emission of electrons from end plate in expander of open trap. Phys. Plasmas 26 (1).CrossRefGoogle Scholar
Skovorodin, D.I., Chernoshtanov, I.S., Amirov, V.K., Astrelin, V.T., Bagryanskii, P.A., Beklemishev, A.D., Burdakov, A.V., Gorbovskii, A.I., Kotel'nikov, I.A., Magommedov, E.M., et al. 2023 Gas-dynamic multiple-mirror trap GDMT. Plasma Phys. Rep. 49 (9), 10391086.CrossRefGoogle Scholar
Skovorodin, D.I., Zaytsev, K.V. & Beklemishev, A.D. 2013 Global sound modes in mirror traps with anisotropic pressure. Phys. Plasmas 20 (10).CrossRefGoogle Scholar
Soldatkina, E., Anikeev, M., Bagryansky, P., Korzhavina, M., Maximov, V., Savkin, V., Yakovlev, D., Yushmanov, P. & Dunaevsky, A. 2017 Influence of the magnetic field expansion on the core plasma in an axisymmetric mirror trap. Phys. Plasmas 24 (2).CrossRefGoogle Scholar
Soldatkina, E.I., Maximov, V.V., Prikhodko, V.V., Savkin, V.Y., Skovorodin, D.I., Yakovlev, D.V. & Bagryansky, P.A. 2020 Measurements of axial energy loss from magnetic mirror trap. Nucl. Fusion 60 (8), 086009.CrossRefGoogle Scholar
Sudnikov, A.V., Ivanov, I.A., Inzhevatkina, A.A., Larichkin, M.V., Lomov, K.A., Postupaev, V.V., Tolkachev, M.S. & Ustyuzhanin, V.O. 2022 Plasma flow suppression by the linear helical mirror system. J. Plasma Phys. 88 (1), 905880102.CrossRefGoogle Scholar
SuperOx 2023 Available at: https://www.superox.ru. Accessed: 28.12.2023.Google Scholar
Yurov, D.V. & Prikhodko, V.V. 2016 a Optimization of a mirror-based neutron source using differential evolution algorithm. Nucl. Fusion 56 (12), 126003.CrossRefGoogle Scholar
Yurov, D.V. & Prikhodko, V.V. 2016 b Optimization of a mirror-based neutron source using differential evolution algorithm. Nucl. Fusion 56 (12), 126003.CrossRefGoogle Scholar
Zaytsev, K.V., Anikeev, A.V., Bagryansky, P.A., Donin, A.S., Korobeinikova, O.A., Korzhavina, M.S., Kovalenko, Y.V., Lizunov, A.A., Maximov, V.V., Pinzhenin, E.I., et al. 2014 Kinetic instability observations in the gas dynamic trap. Phys. Scr. 2014 (T161), 014004.CrossRefGoogle Scholar