Skip to main content Accessibility help

Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence

  • A. A. Schekochihin (a1) (a2), J. T. Parker (a3) (a4), E. G. Highcock (a1) (a4), P. J. Dellar (a3), W. Dorland (a1) (a2) (a5) and G. W. Hammett (a1) (a2) (a6)...


A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating $\boldsymbol{E}\times \boldsymbol{B}$ flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the ‘anti-phase-mixing’ effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the ‘critical balance’ between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence
      Available formats


Corresponding author

Email address for correspondence:


Hide All
Abel, I. G. & Cowley, S. C. 2013 Multiscale gyrokinetics for rotating tokamak plasmas: II. Reduced models for electron dynamics. New J. Phys. 15, 023041.
Abel, I. G., Plunk, G. G., Wang, E., Barnes, M., Cowley, S. C., Dorland, W. & Schekochihin, A. A. 2013 Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows. Rep. Prog. Phys. 76, 116201.
Alexandrova, O., Lacombe, C., Mangeney, A., Grappin, R. & Maksimovic, M. 2012 Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J. 760, 121.
Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S. J. & Robert, P. 2009 Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103, 165003.
Armstrong, T. P. 1967 Numerical studies of the nonlinear Vlasov equation. Phys. Fluids 10, 1269.
Bañón Navarro, A., Morel, P., Albrecht-Marc, M., Carati, D., Merz, F., Görler, T. & Jenko, F. 2011a Free energy balance in gyrokinetic turbulence. Phys. Plasmas 18, 092303.
Bañón Navarro, A., Morel, P., Albrecht-Marc, M., Carati, D., Merz, F., Görler, T. & Jenko, F. 2011b Free energy cascade in gyrokinetic turbulence. Phys. Rev. Lett. 106, 055001.
Bañón Navarro, A., Teaca, B., Jenko, F., Hammett, G. W. & Happel, T. 2014 Applications of large eddy simulation methods to gyrokinetic turbulence. Phys. Plasmas 21, 032304.
Barnes, A. 1966 Collisionless damping of hydromagnetic waves. Phys. Fluids 9, 1483.
Barnes, M., Parra, F. I. & Schekochihin, A. A. 2011 Critically balanced ion temperature gradient turbulence in fusion plasmas. Phys. Rev. Lett. 107, 115003.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Beer, M. A. & Hammett, G. W. 1996 Toroidal gyrofluid equations for simulations of tokamak turbulence. Phys. Plasmas 3, 4046.
Beresnyak, A. 2015 On the parallel spectrum in magnetohydrodynamic turbulence. Astrophys. J. 801, L9.
Bernstein, I. B. 1958 Waves in a plasma in a magnetic field. Phys. Rev. 109, 10.
Bershadskii, A. & Sreenivasan, K. R. 2004 Intermittency and the passive nature of the magnitude of the magnetic field. Phys. Rev. Lett. 93, 064501.
Black, C., Germaschewski, K., Bhattacharjee, A. & Ng, C. S. 2013 Discrete kinetic eigenmode spectra of electron plasma oscillations in weakly collisional plasma: a numerical study. Phys. Plasmas 20, 012125.
Boldyrev, S. 2005 On the spectrum of magnetohydrodynamic turbulence. Astrophys. J. 626, L37.
Bratanov, V., Jenko, F., Hatch, D. R. & Wilczek, M. 2013 Nonuniversal power-law spectra in turbulent systems. Phys. Rev. Lett. 111, 075001.
Candy, J. & Waltz, R. E. 2006 Velocity-space resolution, entropy production, and upwind dissipation in Eulerian gyrokinetic simulations. Phys. Plasmas 13, 032310.
Casati, A., Gerbaud, T., Hennequin, P., Bourdelle, C., Candy, J., Clairet, F., Garbet, X., Grandgirard, V., Gürcan, Ö. D., Heuraux, S. et al. 2009 Turbulence in the TORE SUPRA tokamak: measurements and validation of nonlinear simulations. Phys. Rev. Lett. 102, 165005.
Celnikier, L. M., Harvey, C. C., Jegou, R., Moricet, P. & Kemp, M. 1983 A determination of the electron density fluctuation spectrum in the solar wind, using the ISEE propagation experiment. Astron. Astrophys. 126, 293.
Celnikier, L. M., Muschietti, L. & Goldman, M. V. 1987 Aspects of interplanetary plasma turbulence. Astron. Astrophys. 181, 138.
Chang, O., Peter Gary, S. & Wang, J. 2011 Whistler turbulence forward cascade: three-dimensional particle-in-cell simulations. Geophys. Res. Lett. 38, L22102.
Chen, C. H. K., Bale, S. D., Salem, C. & Mozer, F. S. 2011 Frame dependence of the electric field spectrum of solar wind turbulence. Astrophys. J. 737, L41.
Chen, C. H. K., Boldyrev, S., Xia, Q. & Perez, J. C. 2013 Nature of subproton scale turbulence in the solar wind. Phys. Rev. Lett. 110, 225002.
Chen, C. H. K., Horbury, T. S., Schekochihin, A. A., Wicks, R. T., Alexandrova, O. & Mitchell, J. 2010 Anisotropy of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 104, 255002.
Chen, C. H. K., Sorriso-Valvo, L., Šafránková, J. & Němeček, Z. 2014 Intermittency of solar wind density fluctuations from ion to electron scales. Astrophys. J. 789, L8.
Cho, J. & Lazarian, A. 2004 The anisotropy of electron magnetohydrodynamic turbulence. Astrophys. J. 615, L41.
Connaughton, C., Nazarenko, S. & Quinn, B.2014 Rossby and drift wave turbulence and zonal flows: the Charney–Hasegawa–Mima model and its extensions, Preprint, arXiv:1407.1896.
Coppi, B., Rosenbluth, M. N. & Sagdeev, R. Z. 1967 Instabilities due to temperature gradients in complex magnetic field configurations. Phys. Fluids 10, 582.
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Aero. Sci. 18, 417.
Corrsin, S. 1963 Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulence. J. Atmos. Sci. 20, 115.
Cowley, S. C., Kulsrud, R. M. & Sudan, R. 1991 Considerations of ion-temperature-gradient-driven turbulence. Phys. Fluids B 3, 2767.
Crownfield, F. R. Jr. 1977 Plasma oscillations and Landau damping. Phys. Fluids 20, 1483.
Davidson, P. A. 2010 On the decay of Saffman turbulence subject to rotation, stratification or an imposed magnetic field. J. Fluid Mech. 663, 268.
Davidson, P. A. 2013 Turbulence in Rotating, Stratified and Electrically Conducting Fluids. Cambridge University Press.
Diamond, P. H., Hasegawa, A. & Mima, K. 2011 Vorticity dynamics, drift wave turbulence, and zonal flows: a look back and a look ahead. Plasma Phys. Control. Fusion 53, 124001.
Diamond, P. H., Itoh, S.-I., Itoh, K. & Hahm, T. S. 2005 Zonal flows in plasma – a review. Plasma Phys. Control. Fusion 47, 35.
Dimits, A. M., Bateman, G., Beer, M. A., Cohen, B. I., Dorland, W., Hammett, G. W., Kim, C., Kinsey, J. E., Kotschenreuther, M., Kritz, A. H. et al. 2000 Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7, 969.
Dorland, W. & Hammett, G. W. 1993 Gyrofluid turbulence models with kinetic effects. Phys. Fluids B 5, 812.
Dorland, W., Jenko, F., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient turbulence. Phys. Rev. Lett. 85, 5579.
Drake, J. F., Guzdar, P. N. & Dimits, A. 1991 Three-dimensional simulation of $\boldsymbol{{\rm\nabla}}T_{i}$ -driven turbulence and transport. Phys. Fluids B 3, 1937.
Drake, J. F., Guzdar, P. N. & Hassam, A. B. 1988 Streamer formation in plasma with a temperature gradient. Phys. Rev. Lett. 61, 2205.
Eltgroth, P. G. 1974 Plasma heating calculations using a transform method. Phys. Fluids 17, 1602.
Eyink, G. L. & Xin, J. 2000 Self-similar decay in the Kraichnan model of a passive scalar. J. Stat. Phys. 100, 679.
Fowler, T. K. 1963 Lyapunov’s stability criteria for plasmas. J. Math. Phys. 4, 559.
Fowler, T. K. 1968 Thermodynamics of unstable plasmas. Adv. Plasma Phys. 1, 201.
Gary, S. P. & Borovsky, J. E. 2008 Damping of long-wavelength kinetic Alfvén fluctuations: Linear theory. J. Geophys. Res. 113, A12104.
Ghim, Y.-c., Schekochihin, A. A., Field, A. R., Abel, I. G., Barnes, M., Colyer, G., Cowley, S. C., Parra, F. I., Dunai, D. & Zoletnik, S. 2013 Experimental signatures of critically balanced turbulence in MAST. Phys. Rev. Lett. 110, 145002.
Goldreich, P. & Sridhar, S. 1995 Toward a theory of interstellar turbulence. 2: strong Alfvénic turbulence. Astrophys. J. 438, 763.
Goldreich, P. & Sridhar, S. 1997 Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680.
Görler, T. & Jenko, F. 2008 Multiscale features of density and frequency spectra from nonlinear gyrokinetics. Phys. Plasmas 15, 102508.
Goswami, P., Passot, T. & Sulem, P. L. 2005 A Landau fluid model for warm collisionless plasmas. Phys. Plasmas 12, 102109.
Gould, R. W., O’Neil, T. M. & Malmberg, J. H. 1967 Plasma wave echo. Phys. Rev. Lett. 19, 219.
Grad, H. 1949 On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2, 331.
Grant, F. C. & Feix, M. R. 1967 Fourier–Hermite solutions of the Vlasov equations in the linearized limit. Phys. Fluids 10, 696.
Gürcan, Ö. D., Garbet, X., Hennequin, P., Diamond, P. H., Casati, A. & Falchetto, G. L. 2009 Wave-number spectrum of drift-wave turbulence. Phys. Rev. Lett. 102, 255002.
Hallatschek, K. 2004 Thermodynamic potential in local turbulence simulations. Phys. Rev. Lett. 93, 125001.
Hammett, G. W., Beer, M. A., Dorland, W., Cowley, S. C. & Smith, S. A. 1993 Developments in the gyrofluid approach to tokamak turbulence simulations. Plasma Phys. Control. Fusion 35, 973.
Hammett, G. W., Dorland, W. & Perkins, F. W. 1992 Fluid models of phase mixing, Landau damping, and nonlinear gyrokinetic dynamics. Phys. Fluids B 4, 2052.
Hammett, G. W. & Perkins, F. W. 1990 Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. Phys. Rev. Lett. 64, 3019.
Hatch, D. R., Jenko, F., Bañón Navarro, A. & Bratanov, V. 2013 Transition between saturation regimes of gyrokinetic turbulence. Phys. Rev. Lett. 111, 175001.
Hatch, D. R., Jenko, F., Bratanov, V. & Bañón Navarro, A. 2014 Phase space scales of free energy dissipation in gradient-driven gyrokinetic turbulence. J. Plasma Phys. 80, 531.
Hatch, D. R., Terry, P. W., Jenko, F., Merz, F. & Nevins, W. M. 2011a Saturation of gyrokinetic turbulence through damped eigenmodes. Phys. Rev. Lett. 106, 115003.
Hatch, D. R., Terry, P. W., Jenko, F., Merz, F., Pueschel, M. J., Nevins, W. M. & Wang, E. 2011b Role of subdominant stable modes in plasma microturbulence. Phys. Plasmas 18, 055706.
Hedrick, C. L. & Leboeuf, J.-N. 1992 Landau fluid equations for electromagnetic and electrostatic fluctuations. Phys. Fluids B 4, 3915.
Hennequin, P., Sabot, R., Honoré, C., Hoang, G. T., Garbet, X., Truc, A., Fenzi, C. & Quéméneur, A. 2004 Scaling laws of density fluctuations at high-k on Tore Supra. Plasma Phys. Control. Fusion 46, B121.
Hnat, B., Chapman, S. C. & Rowlands, G. 2005 Compressibility in solar wind plasma turbulence. Phys. Rev. Lett. 94, 204502.
Horton, W. 1999 Drift waves and transport. Rev. Mod. Phys. 71, 735.
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590.
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2008 A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. 113, A05103.
Howes, G. G., Tenbarge, J. M., Dorland, W., Quataert, E., Schekochihin, A. A., Numata, R. & Tatsuno, T. 2011 Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 107, 035004.
Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient driven turbulence. Phys. Plasmas 7, 1904.
Kanekar, A., Schekochihin, A. A., Dorland, W. & Loureiro, N. F. 2015 Fluctuation-dissipation relations for a plasma-kinetic Langevin equation. J. Plasma Phys. 81, 305810104.
Kanekar, A. V.2015 Phase mixing in turbulent magnetized plasmas. PhD thesis, University of Maryland, College Park (
Kellogg, P. J. & Horbury, T. S. 2005 Rapid density fluctuations in the solar wind. Ann. Geophys. 23, 3765.
Kirkwood, J. G. 1946 The statistical mechanical theory of transport processes. I. General theory. J. Chem. Phys. 14, 180.
Kobayashi, S. & Gürcan, Ö. D. 2015 Gyrokinetic turbulence cascade via predator-prey interactions between different scales. Phys. Plasmas 22, 050702.
Kolmogorov, A. N. 1941a On the degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR 31, 538.
Kolmogorov, A. N. 1941b The local structure of turbulence in incompressible viscous fluid at very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299.
Krommes, J. A. 1993 Dielectric response and thermal fluctuations in gyrokinetic plasma. Phys. Fluids B 5, 1066.
Krommes, J. A. 1999 Thermostatted ${\it\delta}f$ . Phys. Plasmas 6, 1477.
Krommes, J. A. 2010 Nonlinear gyrokinetics: a powerful tool for the description of microturbulence in magnetized plasmas. Phys. Scr. T 142, 014035.
Krommes, J. A. & Hu, G. 1994 The role of dissipation in the theory and simulations of homogeneous plasma turbulence, and resolution of the entropy paradox. Phys. Plasmas 1, 3211.
Kruskal, M. D. & Oberman, C. R. 1958 On the stability of plasma in static equilibrium. Phys. Fluids 1, 275.
Kunz, M. W., Schekochihin, A. A., Chen, C. H. K., Abel, I. G. & Cowley, S. C. 2015 Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas. J. Plasma Phys. 81, 325810501.
Landau, L. 1936 Transport equation in the case of Coulomb interaction. Zh. Eksp. Teor. Fiz. 7, 203.
Landau, L. 1946 On the vibration of the electronic plasma. Zh. Eksp. Teor. Fiz. 16, 574.
Lenard, A. & Bernstein, I. B. 1958 Plasma oscillations with diffusion in velocity space. Phys. Rev. 112, 1456.
Lithwick, Y. & Goldreich, P. 2001 Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys. J. 562, 279.
Loureiro, N. F., Schekochihin, A. A. & Zocco, A. 2013 Fast collisionless reconnection and electron heating in strongly magnetized plasmas. Phys. Rev. Lett. 111, 025002.
Makwana, K. D., Terry, P. W., Pueschel, M. J. & Hatch, D. R. 2014 Subdominant modes in zonal-flow-regulated turbulence. Phys. Rev. Lett. 112, 095002.
Malmberg, J. H., Wharton, C. B., Gould, R. W. & O’Neil, T. M. 1968 Plasma wave echo experiment. Phys. Rev. Lett. 20, 95.
Marsch, E. & Tu, C.-Y. 1990 Spectral and spatial evolution of compressible turbulence in the inner solar wind. J. Geophys. Res. 95, 11945.
Mattor, N. 1992 Can Landau-fluid models describe nonlinear Landau damping? Phys. Fluids B 4, 3952.
Morel, P., Bañón Navarro, A., Albrecht-Marc, M., Carati, D., Merz, F., Görler, T. & Jenko, F. 2012 Dynamic procedure for filtered gyrokinetic simulations. Phys. Plasmas 19, 012311.
Morel, P., Navarro, A. B., Albrecht-Marc, M., Carati, D., Merz, F., Görler, T. & Jenko, F. 2011 Gyrokinetic large eddy simulations. Phys. Plasmas 18, 072301.
Nakata, M., Watanabe, T.-H. & Sugama, H. 2012 Nonlinear entropy transfer via zonal flows in gyrokinetic plasma turbulence. Phys. Plasmas 19, 022303.
Nazarenko, S. V. & Schekochihin, A. A. 2011 Critical balance in magnetohydrodynamic, rotating and stratified turbulence: towards a universal scaling conjecture. J. Fluid Mech. 677, 134.
Ng, C. S., Bhattacharjee, A. & Skiff, F. 1999 Kinetic eigenmodes and discrete spectrum of plasma oscillations in a weakly collisional plasma. Phys. Rev. Lett. 83, 1974.
Ottaviani, M., Beer, M. A., Cowley, S. C., Horton, W. & Krommes, J. A. 1997 Unanswered questions in ion-temperature-gradient-driven turbulence. Phys. Rep. 283, 121.
Parker, J. T.2016 Gyrokinetic simulations of fusion plasmas using a spectral velocity space representation. DPhil thesis, University of Oxford (arXiv:1603.04727).
Parker, J. T. & Dellar, P. J. 2015 Fourier–Hermite spectral representation for the Vlasov-Poisson system in the weakly collisional limit. J. Plasma Phys. 81, 305810203.
Parker, J. T., Highcock, E. G., Schekochihin, A. A. & Dellar, P. J.2016 Suppression of phase mixing in drift-kinetic plasma turbulence, Preprint, arXiv:1603.06968.
Parker, S. E. & Carati, D. 1995 Renormalized dissipation in plasmas with finite collisionality. Phys. Rev. Lett. 75, 441.
Passot, T. & Sulem, P. L. 2004 A Landau fluid model for dispersive magnetohydrodynamics. Phys. Plasmas 11, 5173.
Passot, T. & Sulem, P. L. 2006 A fluid model with finite Larmor radius effects for mirror mode dynamics. J. Geophys. Res. 111, A04203.
Passot, T. & Sulem, P. L. 2007 Collisionless magnetohydrodynamics with gyrokinetic effects. Phys. Plasmas 14, 082502.
Passot, T. & Sulem, P. L. 2015 A model for the non-universal power law of the solar wind sub-ion-scale magnetic spectrum. Astrophys. J. 812, L37.
Passot, T., Sulem, P. L. & Hunana, P. 2012 Extending magnetohydrodynamics to the slow dynamics of collisionless plasmas. Phys. Plasmas 19, 082113.
Plunk, G. G. 2013 Landau damping in a turbulent setting. Phys. Plasmas 20, 032304.
Plunk, G. G., Bañón Navarro, A. & Jenko, F. 2015 Understanding nonlinear saturation in zonal-flow-dominated ion temperature gradient turbulence. Plasma Phys. Control. Fusion 57, 045005.
Plunk, G. G., Cowley, S. C., Schekochihin, A. A. & Tatsuno, T. 2010 Two-dimensional gyrokinetic turbulence. J. Fluid Mech. 664, 407.
Plunk, G. G. & Parker, J. T. 2014 Irreversible energy flow in forced Vlasov dynamics. Eur. Phys. J. D 68, 296.
Podesta, J. J., Borovsky, J. E. & Gary, S. P. 2010 A kinetic Alfvén wave cascade subject to collisionless damping cannot reach electron scales in the solar wind at 1 AU. Astrophys. J. 712, 685.
Quinn, B., Nazarenko, S., Connaughton, C., Gallagher, S. & Hnat, B.2013 Modulational instability in basic plasma and geophysical models, Preprint, arXiv:1312.4256.
Ramos, J. J. 2005 Fluid formalism for collisionless magnetized plasmas. Phys. Plasmas 12, 052102.
Richardson, L. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.
Rogers, B. N., Dorland, W. & Kotschenreuther, M. 2000 Generation and stability of zonal flows in ion-temperature-gradient mode turbulence. Phys. Rev. Lett. 85, 5336.
Rogers, B. N., Drake, J. F. & Zeiler, A. 1998 Phase space of tokamak edge turbulence, the L–H transition, and the formation of the edge pedestal. Phys. Rev. Lett. 81, 4396.
Rudakov, L. I. & Sagdeev, R. Z. 1961 On the instability of inhomogeneous rarefied plasma in a strong magnetic field. Dokl. Akad. Nauk SSSR 138, 581.
Saffman, P. G. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581.
Sahraoui, F., Goldstein, M. L., Belmont, G., Canu, P. & Rezeau, L. 2010 Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101.
Sahraoui, F., Goldstein, M. L., Robert, P. & Khotyaintsev, Y. V. 2009 Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102, 231102.
Sahraoui, F., Huang, S. Y., Belmont, G., Goldstein, M. L., Rétino, A., Robert, P. & De Patoul, J. 2013 Scaling of the electron dissipation range of solar wind turbulence. Astrophys. J. 777, 15.
Schekochihin, A. A., Cowley, S. C. & Dorland, W. 2007 Interplanetary and interstellar plasma turbulence. Plasma Phys. Control. Fusion 49, 195.
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Plunk, G. G., Quataert, E. & Tatsuno, T. 2008 Gyrokinetic turbulence: a nonlinear route to dissipation through phase space. Plasma Phys. Control. Fusion 50, 124024.
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310.
Schekochihin, A. A., Haynes, P. H. & Cowley, S. C. 2004 Diffusion of passive scalar in a finite-scale random flow. Phys. Rev. E 70, 046304.
Schekochihin, A. A., Highcock, E. G. & Cowley, S. C. 2012 Subcritical fluctuations and suppression of turbulence in differentially rotating gyrokinetic plasmas. Plasma Phys. Control. Fusion 54, 055011.
Schekochihin, A. A., Stipani, L., Califano, F., Staines, C., Kanekar, A., Dorland, W. & Hammett, G. W.2016 Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence. II. Kinetic passive scalar. J. Plasma Phys. In preparation.
Scott, B. 2010 Derivation via free energy conservation constraints of gyrofluid equations with finite-gyroradius electromagnetic nonlinearities. Phys. Plasmas 17, 102306.
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Mon. Weath. Rev. 91, 99.
Smith, S. A.1997 Dissipative closures for statistical moments, fluid moments, and subgrid scales in plasma turbulence. PhD thesis, Princeton University (∼hammett/sasmith/thesis.html).
Snyder, P. B. & Hammett, G. W. 2001a A Landau fluid model for electromagnetic plasma microturbulence. Phys. Plasmas 8, 3199.
Snyder, P. B. & Hammett, G. W. 2001b Electromagnetic effects on plasma microturbulence and transport. Phys. Plasmas 8, 744.
Snyder, P. B., Hammett, G. W. & Dorland, W. 1997 Landau fluid models of collisionless magnetohydrodynamics. Phys. Plasmas 4, 3974.
Sugama, H., Okamoto, M., Horton, W. & Wakatani, M. 1996 Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence. Phys. Plasmas 3, 2379.
Tatsuno, T., Dorland, W., Schekochihin, A. A., Plunk, G. G., Barnes, M., Cowley, S. C. & Howes, G. G. 2009 Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence. Phys. Rev. Lett. 103, 015003.
Teaca, B., Navarro, A. B. & Jenko, F. 2014 The energetic coupling of scales in gyrokinetic plasma turbulence. Phys. Plasmas 21, 072308.
Teaca, B., Navarro, A. B., Jenko, F., Brunner, S. & Villard, L. 2012 Locality and universality in gyrokinetic turbulence. Phys. Rev. Lett. 109, 235003.
Told, D., Jenko, F., Tenbarge, J. M., Howes, G. G. & Hammett, G. W. 2015 Multiscale nature of the dissipation range in gyrokinetic simulations of Alfvénic turbulence. Phys. Rev. Lett. 115, 025003.
Vermare, L., Hennequin, P., Gürcan, Ö. D., Bourdelle, C., Clairet, F., Garbet, X., Sabot, R. & Tore Supra Team 2011 Impact of collisionality on fluctuation characteristics of micro-turbulence. Phys. Plasmas 18, 012306.
Watanabe, T.-H. & Sugama, H. 2004 Kinetic simulation of steady states of ion temperature gradient driven turbulence with weak collisionality. Phys. Plasmas 11, 1476.
Watanabe, T.-H. & Sugama, H. 2006 Velocity space structures of distribution function in toroidal ion temperature gradient turbulence. Nucl. Fusion 46, 24.
Weiland, J. 1992 Nonlinear effects in velocity space and drift wave transport in tokamaks. Phys. Fluids B 4, 1388.
Zakharov, V. E., L’vov, V. S. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence I: Wave Turbulence. Springer.
Zocco, A. & Schekochihin, A. A. 2011 Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas. Phys. Plasmas 18, 102309.
MathJax is a JavaScript display engine for mathematics. For more information see

Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence

  • A. A. Schekochihin (a1) (a2), J. T. Parker (a3) (a4), E. G. Highcock (a1) (a4), P. J. Dellar (a3), W. Dorland (a1) (a2) (a5) and G. W. Hammett (a1) (a2) (a6)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed