Skip to main content Accessibility help
×
Home

Performance investigation of a high-temperature and power Hall-effect electric propulsion

  • Lai Li (a1), Xi Lu (a2), Wei Wang (a2), Guiping Zhu (a1), Hulin Huang (a1) and Xidong Zhang (a3)...

Abstract

This paper discusses a detailed computational analysis that illustrated the influences of the magnetic field and external potential on the performance of a high-temperature Hall-effect electric thruster. Uniform and non-uniform magnetic field configurations were examined. The Lorentz force in the $x$ direction, acting on the plasma, was shown to substantially enhance the flow velocity in the non-uniform magnetic field, which indicated that the non-uniform magnetic field was more suitable for Hall-effect electromagnetic acceleration. The static temperature increased with the external potential, especially near the region of cathode. This increment in gas temperature, together with the effect of the Lorentz force, results in the enhancement of the velocity at the front and back of the cathode. However, the Mach number and gas density decreased due to static temperature increases caused by the conversion of more electric power into internal energy. The thrust increased eventually with the increase of the average exit velocity.

Copyright

Corresponding author

Email address for correspondence: zhuguiping@nuaa.edu.cn

References

Hide All
Borowski, S. K., Mccurdy, D. & Packard, T. 2012 Nuclear thermal propulsion (NTP), A proven, growth technology for ‘Fast Transit’ human missions to mars. In IEEE Aerospace Conference, pp. 120. IEEE.
Borowski, S. K., Mccurdy, D. R. & Burke, L. M. 2014 The nuclear thermal propulsion stage (NTPS), a key space asset for human exploration and commercial missions to the moon. In AIAA Space Conference and Exposition, pp. 20135465. AIAA.
Brown, D. L., Beal, B. E. & Haas, J. M. 2010 Air force research laboratory high power electric propulsion technology development. In IEEE Aerospace Conference, pp. 19.
Cassady, R. J., Frisbee, R. H., Gilland, J. H., Houts, M. G., LaPointe, M. R., Maresse-Reading, C. M., Oleson, S. R., Polk, J. E., Russell, D. & Sengupta, A. 2008 Recent advances in nuclear powered electric propulsion for space exploration. Energy Convers. Manage. 49 (3), 412435.
Choueiri, E. Y. 2004 A critical history of electric propulsion, the first 50 years (1906–1956). J. Propul. Power 20 (2), 193203.
Clark, J. S., George, J. A., Gefert, L. P., Doherty, M. P. & Sefcik, R. J. 1994 Nuclear electric propulsion, A better, safer, cheaper transportation system for human exploration of Mars. pp. 115. American Institute of Physics, NASA-TM-106406.
Florenz, R., Gallimore, A. D. & Peterson, P. Y. 2011 Developmental status of a 100-kW class laboratory nested channel Hall thruster. In 32nd International Electric Propulsion Conference, IEPC-2011-246.
Harada, N., Hishikawa, M., Nara, N. & Sakamoto, N. 2005 Plasma Stability, Generator Performance and Stable Operation of Mixed Inert Gas Non-equilibrium MHD Generator, vol. 1 (07), pp. 5969. MISM.
Hopkins, M. A., Jason, M., Makela, J. M., Washeleski, R. & King, L.2010 Mass flow control in a magnesium Hall-effect thruster. In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-2010-6681.
Ichihara, D., Uno, T., Kataoka, H., Jeong, J., Iwakawa, A. & Sasoh, A. 2016 Ten-ampere-level, applied-field-dominant operation in magnetoplasmadynamic thrusters. J. Propul. Power 33 (2), 110.
Jacobson, D. T., Manzella, D. H., Hofer, R. R. & Peterson, P. Y. 2004 NASA’s 2004 Hall thruster program. AIAA J. 111.
Jankovsky, R. S., Tverdokhlebov, S. & Manzella, D. 1999 High power Hall thrusters. In Proceedings of the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-99-2949.
Joyner, C. R., Levack, D. & Borowski, S. K. 2012 Development of a small nuclear thermal propulsion flight demonstrator concept that is scalable to human missions. In 48th AIAA/ASME/SAE/ASEE, Joint Propulsion Conference and Exhibit, pp. 20124207.
Kim, H., Lim, Y., Choe, W., Park, S. & Seon, J. 2005 Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas. Appl. Phys. Lett. 106 (15), 2579.
Liang, R. & Gallimore, A. D. 2011 Far-field plume measurements of a nested-channel Hall-effect thruster. In 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, AIAA-2011-1016.
Litchford, R. J. & Harada, N. 2011 Multi-MW closed cycle MHD nuclear space power via nonequilibrium He/Xe working plasma. In Proceedings of Nuclear and Emerging Technologies for Space, Albuquerque, NM, p. 3349.
Mazouffre, S. 2016 Electric propulsion for satellites and spacecraft, established technologies and novel approaches. Plasma Sources Sci. Technol. 25 (3), 033002.
McVey, J. B., Perrucci, A. S. & Britt, E. A.2005 Multichannel Hall effect thruster. United States Patent, Patent No. US 7,030,576 B2.
Mitchner, M. & Kruger, C. H. 1973 Partially Ionized Gases. Wiley.
Ortega, A. L. & Mikellides, I. G. 2016 The importance of the cathode plume and its interactions with the ion beam in numerical simulations of Hall thrusters. Phys. Plasmas 23 (4), 295865.
Paccani, G., Chiarotti, U. & Deininger, W. D. 2015 Quasisteady ablative magnetoplasmadynamic thruster performance with different propellant. J. Propul. Power 14 (2), 254260.
Soulas, G. C., Haag, T. W. & Herman, D. A.2012 Performance test results of the NASA-457Mv2 Hall thruster. In 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-2012-3940.
Tajmar, M. & Wang, J. 2000 Three-dimensional numerical simulation of field-emission-electric-propulsion neutralization. J. Propul. Power 16 (3), 536544.
Tanaka, M., Murakami, T. & Okuno, Y. 2014 Plasma characteristics and performance of magnetohydrodynamic generator with high-temperature inert gas plasma. IEEE Trans. Plasma Sci. 42 (12), 40204025.
Tanaka, M. & Okuno, Y. 2016 High-temperature inert-gas-plasma Faraday-type magnetohydrodynamic generator with various working gases. J. Propul. Power 32 (4), 16.
Wilbur, P. J., Rawlin, V. K. & Beattie, J. R. 1998 Ion thruster development trends and status in the United States. J. Propul. Power 14 (5), 708715.
Wirz, R. & Goebel, D. 2008 Effects of magnetic field topography on ion thruster external performance. Plasma Sources Sci. Technol. 17 (3), 035010.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Performance investigation of a high-temperature and power Hall-effect electric propulsion

  • Lai Li (a1), Xi Lu (a2), Wei Wang (a2), Guiping Zhu (a1), Hulin Huang (a1) and Xidong Zhang (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed