Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-30T18:13:25.886Z Has data issue: false hasContentIssue false

Numerical study of azimuthal sheath structure and asymmetric anomalous erosion in a stationary plasma thruster

Published online by Cambridge University Press:  29 March 2019

Hui Liu*
Affiliation:
Laboratory of Plasma Propulsion, Harbin Institute of Technology, Harbin 150001, China
Xiang Niu
Affiliation:
Laboratory of Plasma Propulsion, Harbin Institute of Technology, Harbin 150001, China
Da-Ren Yu
Affiliation:
Laboratory of Plasma Propulsion, Harbin Institute of Technology, Harbin 150001, China
*
Email address for correspondence: huiliu@hit.edu.cn

Abstract

The influence of the azimuthal electron drift on anomalous erosion and the sheath profile in a stationary plasma thruster (SPT) is analysed in this article. It is found that the anomalous erosion has a self-organized structure, which is formed by the interaction between the plasma and the ceramic walls. In order to interpret the mechanism of the azimuthal erosion structure, a particle in cell (PIC) model is developed to simulate the azimuthal sheath. The results show that the electron azimuthal Hall drift due to crossed electric and magnetic field plays a key role in the azimuthal erosion evolution process. Electron Hall drift can generate an asymmetric sheath structure and induce azimuthal sheath oscillation. Furthermore, an asymmetric sheath caused by the integrated effect of the azimuthal irregular wall structure and azimuthal Hall drift will result in the azimuthal movement of ions. Based on the sheath simulated results, an erosion model is used to simulate the azimuthal erosion evolution. An asymmetric erosion profile caused by the azimuthal asymmetric ion sputtering is found.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahedo, E. & Escobar, D. 2013 Global stability analysis of azimuthal oscillations in Hall thrusters. IEEE Trans. Plasma Sci. 43 (1), doi:10.1109/TPS.2014.2367913.Google Scholar
Alexander, J. S., Joshua, L. R. & Hilmas, G. 2014 Effects of plasma exposure on boron nitride ceramic insulators for Hall-effect thrusters. J. Propul. Power 30, 3, doi:10.2514/1.B34877.Google Scholar
Birdsall, C. K. & Langdon, A. B. 1991 Plasma Physics via Computer Simulation, 1st edn. CRC Press.Google Scholar
Cheng, S. & Sanchez, M. M. 2008 Hybrid particle-in-cell erosion modeling of two Hall thrusters. J. Propul. Power 24, 987, doi:10.2514/1.36179.Google Scholar
Cho, S., Komurasaki, K. & Arakawa, Y. 2013a Kinetic particle simulation of discharge and wall erosion of a Hall thruster. Phys. Plasmas 20, 063501, doi:10.1063/1.4810798.Google Scholar
Cho, S., Yokota, S., Komurasaki, K. & Arakawa, Y. 2013b Multilayer coating method for investigating channel-wall erosion in a Hall thruster. J. Propul. Power 29 (1), 278282, doi:10.2514/1.B34555.Google Scholar
Doss, S. & Miller, K. 1979 Dynamic ADI methods for elliptic equations. SIAM J. Numer. Anal. 16, 837, doi:10.1137/0716063.Google Scholar
Garnier, Y., Viel, V., Roussel, J. F. & Bernard, J. 1999 Low-energy xenon ion sputtering of ceramics investigated for stationary plasma thrusters. J. Vac. Sci. Technol. A 17, 3246, doi:10.1116/1.582050.Google Scholar
Gary, S. P. & Sanderson, J. 1970 Longitudinal waves in a perpendicular collisionless plasma shock: I. cold ions. J. Plasma Phys. 4, 739, doi:10.1017/S0022377800005390.Google Scholar
Gorshkov, O. A., Dyshlyuk, E. N. & Shagaida, A. A. 2007 The possibility of determining the rate of erosion of the discharge chamber of a thruster with closed electron drift and extended zone of acceleration using the method of emission spectroscopy. High Temperature 45, 751, doi:10.1134/s0018151x07060041.Google Scholar
Grimaud, L. & Mazouffre, S. 2017 Ion behavior in low-power magnetically shielded and unshielded Hall thrusters. Plasma Sources Sci. Technol. 26 (5), 055020, doi:10.1088/1361-6595/aa660d.Google Scholar
Katardjiev, I. V., Carter, G. & Nobes, M. J. 1989 The application of the Huygens principle to surface evolution in inhomogeneous, anisotropic and time-dependent systems. J. Phys. D: Appl. Phys. 22, 1813, doi:10.1088/0022-3727/22/12/003.Google Scholar
Keidar, M. & Isak, I. B. 2009 Sheath and boundary conditions for plasma simulations of a Hall thruster discharge with magnetic lenses. Appl. Phys. Lett. 94, 191501, doi:10.1063/1.3132083.Google Scholar
Koizumi, H., Komurasaki, K. & Arakawa, Y. 2008 Numerical prediction of wall erosion on a Hall thruster. Vacuum 83, 67, doi:10.1016/j.vacuum.2008.03.096.Google Scholar
Liu, H., Wu, B. Y., Yu, D. R., Cao, Y. & Duan, P. 2010 Particle-in-cell simulation of a Hall thruster. J. Phys. D: Appl. Phys. 43, 165202, doi:10.1088/0022-3727/43/16/165202.Google Scholar
Lou, G. & Mazouffre, S. 2018 Performance comparison between standard and magnetically shielded 200 W Hall thrusters with BN-SiO2 and graphite channel walls. Vacuum 155, 514523, doi:10.1016/j.vacuum.2018.06.056.Google Scholar
Morozov, I. 2003 The conceptual development of stationary plasma thrusters. Plasma Phys. Rep. 29, 235, doi:10.1134/1.1561119.Google Scholar
Sarrailh, P., Belhaj, M., Inguimbert, V. & Boniface, C. 2017 Synergic erosion of ceramic by electron and ion simultaneous irradiation of the Hall thruster channel walls. In 35th International Electric Propulsion Conference, Atlanta, Italy, pp. 314323.Google Scholar
Satonik, A. J., Rovey, J. L. & Hilmas, G. 2014 Effects of plasma exposure on boron nitride ceramic insulators for Hall-effect thrusters. J. Propul. Power 30, 3, doi:10.2514/1.B34877.Google Scholar
Schwager, L. A. & Birdsall, C. K. 1990 Collector and source sheaths of a finite ion temperature plasma. Phys. Fluids B: Plasma Phys. 2, 1057, doi:10.1063/1.859279.Google Scholar
Sommier, E., Scharfe, M. K., Gascon, N., Cappelli, M. A. & Fernandez, E. 2007 Simulating plasma-induced Hall thruster wall erosion with a two-dimensional hybrid model. IEEE Trans. Plasma Sci. 35, 1379, doi:10.1109/tps.2007.905943.Google Scholar
Sydorenko, D., Kaganovich, I., Raitses, Y. & Smolyakov, A. 2009 Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission. Phys. Rev. Lett. 103, 145004, doi:10.1103/PhysRevLett.103.145004.Google Scholar
Taccogna, F., Longo, S. & Capitelli, M. 2005 Plasma sheaths in Hall discharge. Phys. Plasmas 12, 093506, doi:10.1063/1.2015257.Google Scholar
Taccogna, F., Longo, S., Capitelli, M. & Schneider, R. 2009 Anomalous transport induced by sheath instability in Hall effect thrusters. Appl. Phys. Lett. 94, 251502, doi:10.1063/1.3152270.Google Scholar
Tsikata, S., Lemoine, N., Pisarev, V. & Gresillon, D. M. 2009 Dispersion relations of electron density fluctuations in a Hall thruster plasma, observed by collective light scattering. Phys. Plasmas 16, 033506, doi:10.1063/1.3093261.Google Scholar
Tsikata, S., Honore, C., Lemoine, N. & Gresillon, D. M. 2010 Three-dimensional structure of electron density fluctuations in the Hall thruster plasma: E $\times$ B mode. Phys. Plasmas 17, 112110, doi:10.1063/1.3499350.Google Scholar
Vahedi, V. & DiPeso, G. 1997 Simultaneous potential and circuit solution for two-dimensional bounded plasma simulation codes. J. Comput. Phys. 13, 149, doi:10.1006/jcph.1996.5591.Google Scholar
Yamamoto, N., Yokota, S., Matsui, M., Komurasaki, K. & Arakawa, Y. 2005 Measurement of erosion rate by absorption spectroscopy in a Hall thruster. Rev. Sci. Instrum. 76, 083111, doi:10.1063/1.2001630.Google Scholar
Yu, D. R., Li, Y. Q. & Song, S. H. 2006 Ion sputtering erosion of channel wall corners in Hall thrusters. J. Phys. D: Appl. Phys. 39, 2205, doi:10.1088/0022-3727/39/10/032.Google Scholar
Yu, D. R. & Li, Y. 2007 Volumetric erosion rate reduction of Hall thruster channel wall during ion sputtering process. J. Phys. D: Appl. Phys. 40, 2526, doi:10.1088/0022-3727/40/8/017.Google Scholar
Yu, D. R., Liu, H., Yan, G. J. & Liu, J. Y. 2008 Investigation of the start transient in a Hall thruster. Contrib. Plasma Phys. 48, 603, doi:10.1002/ctpp.200810094.Google Scholar
Zhang, F. K., Yu, D. R., Ding, Y. J. & Li., H. 2011 The spatiotemporal oscillation characteristics of the dielectric wall sheath in stationary plasma thrusters. Appl. Phys. Lett. 98, 111501, doi:10.1063/1.3564898.Google Scholar
Zidar, D. G. & Rovey, J. L. 2012 Hall-effect thruster channel surface properties investigation. J. Propul. Power 28, 2, doi:10.2514/1.B34312.Google Scholar