Skip to main content Accessibility help
×
Home

Numerical simulations of dust charging and wakefield effects

  • W. J. Miloch (a1)

Abstract

Charging of dust grains and related phenomena are fundamental problems in the physics of complex plasmas. The relative motion of grains and plasma breaks the symmetry in dust charging and gives rise to the wake in plasma density and potential, which can significantly influence the dynamics of other grains. This paper gives an overview of dust charging in two- and multi-component plasma flows and related wake effects, and presents recent results from self-consistent particle-in-cell (PIC) simulations. The role of wakefields is considered in the context of charging of downstream grains.

Copyright

Corresponding author

Email address for correspondence: w.j.miloch@fys.uio.no

References

Hide All
Carstensen, J., Greiner, F., Block, D., Schablinski, J., Miloch, W. J. and Piel, A. 2012 Charging and coupling of a vertically aligned particle pair in the plasma sheath. Phys. Plasmas 19 (3), 033702.
Engwall, E., Eriksson, A. I. and Forest, J. 2006 Wake formation behind positively charged spacecraft in flowing tenuous plasmas. Phys. Plasmas 13, 062904.
Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. and Morfill, G. E. 2005 Complex (dusty) plasmas: current status, open issues, perspectives. Phys. Rep. 421, 1103.
Garrett, H. B. 1981 The charging of spacecraft surfaces. Rev. Geophys. 4, 577616.
Hebner, G. A. and Riley, M. E. 2004 Structure of the ion wakefield in dusty plasmas. Phys. Rev. E 69, 026405.
Hockney, R. W. and Eastwood, J. W. 1988 Computer Simulation Using Particles. Bristol: IOP Publishing.
Hutchinson, I. H. 2011 Nonlinear collisionless plasma wakes of small particles. Phys. Plasmas 18, 032111.
Khrapak, S. A., Ivlev, A. V., Zhdanov, S. K. and Morfill, G. E. 2005 Hybrid approach to the ion drag force. Phys. Plasmas 12 (4), 042308.
Kimura, S. and Nakagawa, T. 2008 Electromagnetic full particle simulation of the electric field structure around the moon and the lunar wake. Earth Planets Space 60, 591599.
Kroll, M., Schablinski, J., Block, D. and Piel, A. 2010 On the influence of wakefields on three-dimensional particle arrangements. Phys. Plasmas 17 (1), 013702.
Lampe, M., Joyce, G. and Ganguli, G. 2005 Structure and dynamics of dust in streaming plasma: dust molecules, strings, and crystals. IEEE Trans. Plasma Sci. 33 (1), 5769.
Lapenta, G. 1999 {Simulation of charging and shielding of dust particles in drifting plasmas}. Phys. Plasmas 6, 14421447.
Ludwig, P., Miloch, W. J., Kählert, H. and Bonitz, M. 2012 On the wake structure in streaming complex plasmas. New J. Phys. 14, 053016.
Matyash, K., Schneider, R, Ikkurthi, R, Lewerentz, L and Melzer, A 2010 P3M simulations of dusty plasmas. Plasma Phys. Contr. Fusion 52 (12), 124016.
Melzer, A., Schweigert, V. A., Schweigert, I. V., Homann, A., Peters, S. and Piel, A. 1996 Structure and stability of the plasma crystal. Phys. Rev. E 54 (1), R46.
Miloch, W. J. and Block, D. 2012 Dust grain charging in a wake of other grains. Phys. Plasmas 19, 123703.
Miloch, W. J., Kroll, M. and Block, D. 2010 Charging and dynamics of a dust grain in the wake of another grain in flowing plasmas. Phys. Plasmas 17, 103703.
Miloch, W. J., Trulsen, J. and Pécseli, H. L. 2008a Numerical studies of ion focusing behind macroscopic obstacles in a supersonic plasma flow. Phys. Rev. E 77, 056408.
Miloch, W. J., Vladimirov, S. V., Pécseli, H. L. and Trulsen, J. 2008b Wake behind dust grains in flowing plasmas with a directed photon flux. Phys. Rev. E 77, 065401(R).
Miloch, W. J., Vladimirov, S. V. and Yaroshenko, V. V. 2013 Complex wakes behind objects in multispecies plasmas. EPL 101, 15001.
Miloch, W. J., Yaroshenko, V. V., Vladimirov, S. V., Pécseli, H. L. and Trulsen, J. 2012 Spacecraft charging in owing plasmas; numerical simulations. J. Phys. Conf. Ser. 370, 012004.
Patacchini, L. and Hutchinson, I. H. 2011 Forces on a spherical conducting particle in {E x B} fields. Plasma Phys. Contr. Fusion 53, 065023.
Piel, A. and Melzer, A. 2002 Dynamical processes in complex plasmas. Plasma Phys. Control. Fusion 44, R1R26.
Samarian, A. A., Vladimirov, S. V. and James, B. W. 2005 Wake-induced symmetry-breaking of dust particle arrangements in a complex plasma. JETP Lett. 82 (12), 758762.
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasmas. Bristol: Institute of Physics Publishing.
Verboncoeur, J. P. 2005 Particle simulation of plasmas: review and advances. Plasma Phys. Contr. Fus. 47, A231.
Vladimirov, S. V., Maiorov, S. A. and Ishihara, O. 2003 Molecular dynamics simulation of plasma flow around two stationary dust grains. Phys. Plasmas 10 (10), 3867.
Vladimirov, S. V. and Nambu, M. 1995 Attraction of charged particulates in plasmas with finite flows. Phys. Rev. E 52 (3), R2172.
Vladimirov, S. V., Ostrikov, K. and Samarian, A. A. 2005 Physics and applications of complex plasmas. London: Imperial College Press.
Winske, D. 2001 Nonlinear wake potential in a dusty plasma. IEEE Trans. Plasma Phys. 29 (2), 191.
Winske, D., Daughton, W., Lemons, D. S. and Murillo, M. S. 2000 Ion kinetic effects on the wake potential behind a dust grain in a flowing plasma. Phys. Plasmas 7 (6), 2320.
Yaroshenko, V. V., Miloch, W. J., Vladimirov, S., Thomas, H. M. and Morfill, G. E. 2011 Modelling of Cassini's charging at Saturn orbit insertion flyby. J. Geophys. Res. 116, A12218.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed