Skip to main content Accessibility help
×
Home

Nonlinear modulation of ion-acoustic waves in two-electron-temperature plasmas

  • A. ESFANDYARI-KALEJAHI (a1), I. KOURAKIS (a2) and M. AKBARI-MOGHANJOUGHI (a1)

Abstract

The amplitude modulation of ion-acoustic waves is investigated in a plasma consisting of adiabatic warm ions, and two different populations of thermal electrons at different temperatures. The fluid equations are reduced to nonlinear Schrödinger equation by employing a multi-scale perturbation technique. A linear stability analysis for the wave packet amplitude reveals that long wavelengths are always stable, while modulational instability sets in for shorter wavelengths. It is shown that increasing the value of the hot-to-cold electron temperature ratio (μ), for a given value of the hot-to-cold electron density ratio (ν), favors instability. The role of the ion temperature is also discussed. In the limiting case ν = 0 (or ν → ∞), which correspond(s) to an ordinary (single) electron-ion plasma, the results of previous works are recovered.

Copyright

References

Hide All
[1]Olsen, N. A. and Lee, Y. C. 1974 Phys. Rev. Lett. 33, 1539.
[2]Jones, W. D., Lee, A., Gleman, S. M. and Doucet, H. J. 1975 Phys. Rev. Lett. 35, 1349.
[3]Sudan, R. N. 1973 Proceedings of VI European Conference on Controlled Fusion and Plasma Physics, Vol. 2. USSR Academy of Science, Moscow.
[4]Morales, G. J. and Lee, Y. C. 1974 Phys. Rev. Lett. 33, 1539.
[5]Krall, N. A. and Trivepiece, A. W.Principles of Plasma Physics. New York: McGraw Hill.
[6]Ergun, R. E., et al. 1998 Geophys. Res. Lett. 25, 2061; Delory, G. T., Ergun, R. E., Carlson, C. W., Muschietti, L., Chaston, C. C., Peria, W., McFadden, J. P. and Strangeway, R. 1998 Geophys. Res. Lett. 25 2069; Pottelette, R., Ergun, R. E., Treumann, R. A., Berthomier, M., Carlson, C. W., McFadden, J. P. and Roht, I. 1999 Geophys. Res. Lett. 26, 2629.
[7]McFadden, J. P., Carlson, C. W., Ergun, R. E., Mozer, F. S., Muschietti, Roht I. and Moebius, E. 2003 Geophys. Res. 108, 8018.
[8]Temerin, M. 1982 Phys. Rev. Lett. 48, 1175.
[9]Boström, R. 1988 Phys. Rev. Lett. 61, 82.
[10]Berthomier, M., Pottelette, R. and Malinger, M. 1998 J. Geophys. Res. 103 (A3), 8261.
[11]Matsumoto, H., Kojima, H., Omura, Y., Nagano, I. and Pickett, J. S. 1998 J. Geophys. Res. 25, 1277; Cattell, C. A., Dombeck, J., Wygant, J. R., Hudson, M. K., Mozer, F. S., Kletzing, M. A., Russell, C. T. and Pfaff, R. F. J. Geophys. Res. 26, 425.
[12]Taniuti, T. and Yajima, N. 1969 J. Math. Phys. 10, 1346; Asano, N., Taniuti, T. and Yajima, N. 1969 J. Math. Phys. 10, 2020.
[13]Tagare, S. G. 1973 Plasma Physics 15, 1247.
[14]Tran, M. Q. 1979 Physica Scripta 20, 317.
[15]Ikezi, H. 1973 Phys. Fluids 16, 1668.
[16]Lonngren, K. E. 1998 Optical and Quantum Electronics 30, 615.
[17]Goswami, B. N. and Buti, B. 1976 Phys. Lett. A57, 149.
[18]Sayal, V. K., Yadav, L. L. and Shamara, S. R. 1993 Phys. Scr. 47.
[19]Yadav, L. L., Tiwari, R. S. and Shamara, S. R. 1995 Phys. Rev. E 52.
[20]Rao, N. N. and Shukla, P. K. 1997 Phys. Plasmas 4.
[21]Chatterjee, P. and Roychoudhury, R. 1997 Can. J. Pys. 75.
[22]Nishihara, K. and Tajiri, M. 1981 J. Phys. Soc. Japan 50, 4047.
[23]Yadav, L. L. and Sharma, R. S. 1990 Phys. Lett. 150A, 397.
[24]Mamun, A. A. and Cairns, R. A. 1996 J. Plasma Phys. 56, 157.
[25]Kourakis, I. and Shukla, P. K. 2005 Nonlin. Proc. Geophys. 12, 407.
[26]Sulem, P. and Sulem, C. 1999 Nonlinear Schrödinger Equation. Berlin, Germany: Springer-Verlag.
[27]Sharma, A. S. and Buti, B. 1978 Pramana 10, 629.
[28]Kourakis, I. and Shukla, P. K. 2003 J. Phys. A, Math. Gen. 36, 11901.
[29]Kourakis, I. and Shukla, P. K. 2004 Phys. Plasmas 11, 4506.
[30]Esfandyari-Kalejahi, A. and Asgari, H. 2005 Phys. Plasma 12, 102302.
[31]McKenzie, J. F., Verheest, F., Doyle, T. B. and Hellberg, M. A. 2005 Phys. Plasmas 12, 102305.
[32]McKenzie, J. F., Doyle, T. B., Hellberg, M. A. and Verheest, F. 2005 J. Plasma Phys. 71, 163.
[33]Cattaert, T., Verheest, F. and Hellberg, M. A. 2005 Phys. Plasmas 12, 42901.
[34]Dae-Han, Ki and Young-Daejung, 2007 J. Plasma Phys. 73, 433.
[35]Lazarus, I. J., Bharuthram, R. and Hellberg, M. A. 2008 J. Plasma Phys. 74, 519.
[36]Rios, L. A., Shukla, P. K. and Serbeto, A. 2009 J. Plasma Phys. 75, 3.
[37]Singh, S. V., Reddy, R. V. and Lakhina, G. S. 2001 Adv. Space Res. 28, 1643.
[38]Singh, S. V. and Lakhina, G. S. 2001 Planet. Space Res. 49, 107.
[39]Kourakis, I. and Shukla, P. K. 2004 Phys. Rev. E 69, 036411.
[40]Shukla, P. K., Hellberg, M. A. and Stenflo, L. 2003 J. Atmosph. Solar-Terrestrial Phys. 65, 355.
[41]Fedele, R., Schamel, H. and Shukla, P. K. 2002 Phys. Scr. T 98, 18.
[42]Xue, Ju-Kui, Duan, Wan-Shan and Lang, He, 2002 Chin. Phys. Soc. 11, 1184.
[43]Kakutani, T. and Sugimoto, N. 1974 Phys. Fluids 17, 1617.
[44]Kourakis, I. and Shukla, P. K. 2003 Phys. Plasma 10, 3459.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

Nonlinear modulation of ion-acoustic waves in two-electron-temperature plasmas

  • A. ESFANDYARI-KALEJAHI (a1), I. KOURAKIS (a2) and M. AKBARI-MOGHANJOUGHI (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.