Skip to main content Accessibility help
×
Home

Non-diffusive angular momentum transport in rotating $z$ -pinches

  • G. Rüdiger (a1) (a2) and M. Schultz (a1)

Abstract

The stability of conducting Taylor–Couette flows under the presence of toroidal magnetic background fields is considered. For strong enough magnetic amplitudes such magnetohydrodynamic flows are unstable against non-axisymmetric perturbations which may also transport angular momentum. In accordance with the often used diffusion approximation, one expects the angular momentum transport to be vanishing for rigid rotation. In the sense of a non-diffusive  $\unicode[STIX]{x1D6EC}$ effect, however, even for rigidly rotating $z$ -pinches, an axisymmetric angular momentum flux appears which is directed outward (inward) for large (small) magnetic Mach numbers. The internal rotation in a magnetized rotating tank can thus never be uniform. Those particular rotation laws are used to estimate the value of the instability-induced eddy viscosity for which the non-diffusive $\unicode[STIX]{x1D6EC}$ effect and the diffusive shear-induced transport compensate each other. The results provide the Shakura & Sunyaev viscosity ansatz leading to numerical values linearly growing with the applied magnetic field.

Copyright

Corresponding author

Email address for correspondence: gruediger@aip.de

References

Hide All
Boussinesq, M. 1897 Theorie de lecoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section. Gauthier-Villars.
Chan, K. L. 2001 Rotating convection in F-planes: mean flow and Reynolds stress. Astrophys. J. 548, 11021117.
Chandrasekhar, S. 1956 On the stability of the simplest solution of the equations of hydromagnetics. Proc. Natl Acad. Sci. USA 42, 273276.
Charbonneau, P. & MacGregor, K. B. 1992 Angular momentum transport in magnetized stellar radiative zones. I. Numerical solutions to the core spin-up model problem. Astrophys. J. 387, 639661.
Deguchi, K. 2017 Linear instability in Rayleigh-stable Taylor–Couette flow. Phys. Rev. E 95 (2), 021102.
Elstner, D., Beck, R. & Gressel, O. 2014 Do magnetic fields influence gas rotation in galaxies? Astron. Astrophys. 568, A104.
Herron, I. & Soliman, F. 2006 The stability of Couette flow in a toroidal magnetic field. Appl. Math. Lett. 19, 11131117.
Hupfer, C., Käpylä, P. J. & Stix, M. 2006 Reynolds stresses and meridional circulation from rotating cylinder simulations. Astron. Astrophys. 459, 935944.
Ji, H., Goodman, J. & Kageyama, A. 2001 Magnetorotational instability in a rotating liquid metal annulus. Mon. Not. R. Astron. Soc. 325, L1L5.
Käpylä, P. J. 2019 Magnetic and rotational quenching of the $\unicode[STIX]{x1D6EC}$ effect. Astron. Astrophys. 622, A195.
Kirillov, O. N. & Stefani, F. 2013 Extending the range of the inductionless magnetorotational instability. Phys. Rev. Lett. 111 (6), 061103.
Ogilvie, G. I. & Pringle, J. E. 1996 The non-axisymmetric instability of a cylindrical shear flow containing an azimuthal magnetic field. Mon. Not. R. Astron. Soc. 279, 152164.
Pitts, E. & Tayler, R. J. 1985 The adiabatic stability of stars containing magnetic fields. IV. The influence of rotation. Mon. Not. R. Astron. Soc. 216, 139154.
Pringle, J. E. 1981 Accretion discs in astrophysics. Annu. Rev. Astron. Astrophys. 19, 137162.
Rüdiger, G., Gellert, M., Hollerbach, R., Schultz, M. & Stefani, F. 2018 Stability and instability of hydromagnetic Taylor–Couette flows. Phys. Rep. 741, 189.
Rüdiger, G., Hollerbach, R., Schultz, M. & Elstner, D. 2007 Destabilization of hydrodynamically stable rotation laws by azimuthal magnetic fields. Mon. Not. R. Astron. Soc. 377, 14811487.
Rüdiger, G. & Kitchatinov, L. L. 1996 The internal solar rotation in its spin-down history. Astrophys. J. 466, 1078.
Rüdiger, G. & Shalybkov, D. A.2001 MHD Instability in cylindric Taylor–Couette flow. 12th International Couette-Taylor Workshop, Evanston 2001, arXiv:astro-ph/0108035.
Rüdiger, G. & Zhang, Y. 2001 MHD instability in differentially-rotating cylindric flows. Astron. Astrophys. 378, 302308.
Seilmayer, M., Galindo, V., Gerbeth, G., Gundrum, T., Stefani, F., Gellert, M., Rüdiger, G., Schultz, M. & Hollerbach, R. 2014 Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113 (2), 024505.
Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G., Gellert, M. & Rüdiger, G. 2012 Experimental evidence for a transient Tayler instability in a cylindrical liquid–metal column. Phys. Rev. Lett. 108 (24), 244501.
Shakura, N. I. & Sunyaev, R. A. 1973 Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337355.
Stefani, F. & Kirillov, O. N. 2015 Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92 (5), 051001.
Tataronis, J. A. & Mond, M. 1987 Magnetohydrodynamic stability of plasmas with aligned mass flow. Phys. Fluids 30, 8489.
Tayler, R. J. 1957 Hydromagnetic instabilities of an ideally conducting fluid. Proc. Phys. Soc. B 70, 3148.
Tayler, R. J. 1973 The adiabatic stability of stars containing magnetic fields-I. Toroidal fields. Mon. Not. R. Astron. Soc. 161, 365.
Velikhov, E. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 36, 13891404.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Non-diffusive angular momentum transport in rotating $z$ -pinches

  • G. Rüdiger (a1) (a2) and M. Schultz (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed