Skip to main content Accessibility help
×
Home

Net inverse-bremsstrahlung (NIB) acceleration of a high-energy electron beam in an axial electrostatic wave

  • S. H. Kim (a1)

Abstract

It is shown that stimulated emission is an intrinsically incoherent-phase phenomenon arising from the uncertainty principle, and that therefore the laser gain cannot be described by any classical model, which must be coherent in all aspects. The force due to the net inverse-bremsstrahlung (‘NIB force’) acting on a high-energy electron beam travelling in an undulating field whose wave vector is collinear with the electron beam (‘collinear wiggler’) is found by extending the quantum kinetic theory of the free-electron laser. In the case that an axial electrostatic wave is used as the catalysing field for the net multi- photon inverse bremsstrahlung, it is shown that NIB acceleration is practical only when the potential amplitude (in terms of the electron energy) of the laser wave, [eA0], is comparable to or larger than the electron rest energy mc2.

Copyright

References

Hide All
Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions, p. 366. Dover.
Akama, H. & Nambu, M. 1982 Phys. Lett. 116 A, 155.
Elias, L. R., Fairbank, W. M., Madey, J. M. J., Schwettmann, H. A. & Smith, T. I. 1976 Phys. Rev. Lelt. 36, 717.
Fedorov, M. V. 1981 Prog. Quantum. Electron. 7, 73.
Fedorov, M. V. & Mciver, J. K. 1979 Pis'ma Zh. Tech. Fiz. 5, 607.
Feynman, R. P. 1962 Quantum Electrodynamics, p. 4. Benjamin.
Hopf, F. A., Meystre, P., Scully, M. O. & Louisell, W. H. 1976 Phys. Rev. Lett. 37, 1215.
Hopf, F. A., Kuper, T. G., Moore, G. T. & Scully, M. O. 1980 Free-Electron Generators of Coherent Radiation (ed. Jacobs, S. F., Pilloff, H. S., Sargent, M., Scully, M. O. & Spitzer, R.), vol. 7, p. 31. Addison-Wesley.
Hora, H. 1969 Phys. Fluids 12, 182.
Kim, S. H. 1984 Phys. Fluids 27, 675.
Kim, S. H. 1985 Lett. Nuovo Cim 44, 467.
Kim, S. H. 1986 J.Plasma Phys 36, 195 [corrigendum, 41, 577 (1989)].
Kim, S. H. 1988 Phys. Lett 129 A, 386.
Kim, S. H. 1989 a Phys. Lett 135 A, 39.
Kim, S. H. 1989 b Phys. Lett 135 A, 44.
Kim, S. H. 1989 c Phys. Lett 135 A, 48.
Kim, S. H. 1991 a Intense Microwave and Particle Beams II (ed. Brandt, H. B.). SPIE vol. 1407, p. 620. SPIE–The International Society for Optical Engineering.
Kim, S. H. 1991 b Nuovo Cim. 106 B, 325.
Kim, S. H. 1992 J. Phys. Soc. Japan 61, 131.
Kim, S. H. 1992 J. Plasma Phys. 47, 197.
Kim, S. H. 1992 J. Plasma Phys. 47, 219.
Kim, S. H. 1992 d J. Plasma Phys. 47, 505.
Kim, S. H. 1992 e Nuovo Cim. 107 B, 605.
Kim, S. H. 1992 f J. Korean Phys. Soc. 25, 206.
Kim, S. H. 1992 g J. Plasma Phys 48, 261.
Kim, S. H. 1992 h J. Phys. Soc. Japan 62, 1.
Kroll, N. M. & McMullin, W. A. 1978 Phys. Rev. A 17, 300.
Madey, J. M. J. 1971 J. Appl. Phys 42, 1906.
Nambu, M. 1983 Laser and Particle Beanis 1, 427.
Orzechowski, T. J., Anderson, B. R., Clark, J. C., Fawley, W. M., Paul, A. C., Prosnitz, D., Sharlemann, E. T., Yarema, S. M., Hopkins, D. B., Sessler, A. M. & Wurtele, J. S. 1986 Phys. Rev. Lett. 57, 2172.
Pantell, R. H., Soncini, G. & Putoff, H. E. 1968 IEEE J. Quantum Electron. 4, 905.
Pena, L. 1982 Stochastic Processes Applied to Physics and Other Related Fields (ed. , B. Gomez, S. M. Moore, A. M. Rodriguez-Vargas, A. Rueda), p. 428. World Scientific.
Roberson, C. W.&Sprangle, P. 1989 Phys. Fluids B 1, 3.
Sakurai, J.J. 1980 Advanced Quantum Mechanics. Addison-Wesley.
Volkov, D. M. 1935 Z. Phys. 94, 250.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

Net inverse-bremsstrahlung (NIB) acceleration of a high-energy electron beam in an axial electrostatic wave

  • S. H. Kim (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.