Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-21T23:19:27.170Z Has data issue: false hasContentIssue false

Multiscale structures in a two-temperature relativistic electron-positron-ion plasma

Published online by Cambridge University Press:  02 April 2013

M. IQBAL
Affiliation:
Department of Physics, University of Engineering and Technology, Lahore 54890, Pakistan (muhammad.iqbal@uet.edu.pk)
P. K. SHUKLA
Affiliation:
International Centre for Advanced Studies in Physical Sciences & Institute for Theoretical Physics, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum, Germany

Abstract

A relativistically hot electron, positron and ion (e–p–i) plasma relaxes to a triple curl Beltrami (TCB) field. The TCB field being the superposition of three Beltrami fields is characterized by three scale parameters and hence there exist multiscale structures in the system. It is shown that temperatures of the plasma constituents strongly affect the scale parameters. Generally, the scale parameters associated with the TCB field may be a combination of real and complex roots. The numerical results show that for given Beltrami parameters, an increase in the thermal energy of plasma particles could transform the real eigenvalues to complex ones. It is also observed that one component is more strongly affected relative to other components on increasing temperatures of plasma species. Two different vortices become the same at higher thermal energies. This suggests that it is possible to create high β (kinetic to magnetic pressure ratio) and fully diamagnetic plasma configurations. The study has a potential relevance to space, astrophysics and laboratory plasmas.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berezhiani, V. I., Mahajan, S. M., Yoshida, Z. and Ohhashi, M. 2007 Self-trapping of strong electromagnetic beams in relativistic plasmas. Phys. Rev. E 65, 047402047405.Google Scholar
Berezhiani, V. I., Tskhakaya, D. D. and Shukla, P. K. 1992 Pair production in a strong wake field driven by an intense short laser pulse. Phys. Rev. A 42, 66086612.CrossRefGoogle Scholar
Bhattacharyya, R., Janaki, M. S. and Dasgupta, B. 2003 Relaxation in electron–positron plasma: a possibility. Phys. Lett. A 315, 120125.CrossRefGoogle Scholar
Chandrasekhar, S. and Kendall, P. C. 1957 On force-free magnetic fields. Astrophys. J. 126, 457460.CrossRefGoogle Scholar
Iqbal, M. 2005 Minimization of field-aligned current and flow. J. Plasma Phys. 71, 335344.CrossRefGoogle Scholar
Iqbal, M., Berezhiani, V. I. and Yoshida, Z. 2008 Multiscale structures in relativistic pair plasmas. Phys. Plasmas 15, 032905.CrossRefGoogle Scholar
Iqbal, M., Mirza, A. M., Murtaza, G. and Yoshida, Z. 2001 High β relaxed states with internal conductor plasma configuration. Phys. Plasmas 8, 15591564.CrossRefGoogle Scholar
Iqbal, M. and Shukla, P. K. 2011 Relaxation of a magnetized electron–positron–ion plasma with flow. Phys. Lett. A 375, 27252727.CrossRefGoogle Scholar
Iqbal, M. and Shukla, P. K. 2012a Relaxation of a magnetized two ion species dusty plasma. Phys. Plasmas 19, 033517CrossRefGoogle Scholar
Iqbal, M. and Shukla, P. K. 2012b Beltrami fields in a hot electron–positron–ion plasma. J. Plasma Phys. 78, 207210.CrossRefGoogle Scholar
Mahajan, S. M. and Yoshida, Z. 1998 Double curl Beltrami flow: diamagnetic structures. Phys. Rev. Lett. 81, 48634866.CrossRefGoogle Scholar
Steinhauer, L. C. and Ishida, A. 1997 Relaxation of two-species magnetofluid. Phys. Rev. Lett. 79, 34233426.CrossRefGoogle Scholar
Surko, C. M. and Murphy, T. 1990 Use of the positron as a plasma particle. Phys. Fluids B 2, 13721375.CrossRefGoogle Scholar
Taylor, J. B. 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 11391141.CrossRefGoogle Scholar
Taylor, J. B. 1986 Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741763.CrossRefGoogle Scholar
Tinkle, M. D., Greaves, R. G., Surko, C. M., Spencer, R. L. and Mason, G. W. 1994 Low order modes as diagnostics of spheroidal non-neutral plasmas. Phys. Rev. Lett. 72, 352355.CrossRefGoogle ScholarPubMed
Yoshida, Z. 2010 Nonlinear Science. Dordrecht: Springer.CrossRefGoogle Scholar
Yoshida, Z. and Giga, Y. 1990 Remarks on spectra of operator rot. Math. Z. 204, 235245.CrossRefGoogle Scholar
Yoshida, Z. and Mahajan, S. M. 1999 Simultaneous Beltrami conditions in coupled vortex dynamics. J. Math. Phys. 40, 50805091.CrossRefGoogle Scholar
Yoshida, Z., Mahajan, S. M., Ohsaki, S., Iqbal, M. and Shatashvili, N. 2001 Beltrami fields in plasmas: high-confinement boundary layers and high beta equilibria. Phys. Plasmas 8, 21252131CrossRefGoogle Scholar