Skip to main content Accessibility help

Motivation and challenge to capture both large-scale and local transport in next generation accretion theory

  • Eric G. Blackman (a1) (a2) and Farrukh Nauman (a1)
  • Please note a correction has been issued for this article.


Accretion disc theory is less developed than stellar evolution theory although a similarly mature phenomenological picture is ultimately desired. While the interplay of theory and numerical simulations has amplified community awareness of the role of magnetic fields in angular momentum transport, there remains a long term challenge to incorporate the insights gained from simulations into improving practical models for comparison with observations. What has been learned from simulations that can lead to improvements beyond SS73 in practical models? Here, we emphasize the need to incorporate the role of non-local transport more precisely. To show where large-scale transport would fit into the theoretical framework and how it is currently missing, we review why the wonderfully practical approach of Shakura & Sunyaev (Astron. Astrophys., vol. 24, 1973, pp. 337–355, SS73) is necessarily a mean field theory, and one which does not include large-scale transport. Observations of coronae and jets, combined with the interpretation of results from shearing box simulations, of the magnetorotational instability (MRI) suggest that a significant fraction of disc transport is indeed non-local. We show that the Maxwell stresses in saturation are dominated by large-scale contributions and that the physics of MRI transport is not fully captured by a viscosity. We also clarify the standard physical interpretation of the MRI as it applies to shearing boxes. Computational limitations have so far focused most attention toward local simulations, but the next generation of global simulations should help to inform improved mean field theories. Mean field accretion theory and mean field dynamo theory should in fact be unified into a single theory that predicts the time evolution of spectra and luminosity from separate disc, corona and outflow contributions. Finally, we note that any mean field theory, including that of SS73, has a finite predictive precision that needs to be quantified when comparing the predictions to observations.


Corresponding author

Email address for correspondence:


Hide All
Abramowicz, M., Brandenburg, A. & Lasota, J.-P. 1996 The dependence of the viscosity in accretion discs on the shear/vorticity ratio. Mon. Not. R. Astron. Soc. 281, L21L24.
Asada, K., Inoue, M., Nakamura, M., Kameno, S. & Nagai, H. 2008 Multifrequency polarimetry of the NRAO 140 jet: possible detection of a helical magnetic field and constraints on its pitch angle. Astrophys. J. 682, 798802.
Balbus, S. A. 2003 Enhanced angular momentum transport in accretion disks. Ann. Rev. Astron. Astrophys. 41, 555597.
Balbus, S. A. 2011 Fluid dynamics: a turbulent matter. Nature 470, 475476.
Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution. Astrophys. J. 376, 214233.
Balbus, S. A. & Hawley, J. F. 1998 Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 153.
Barranco, J. A. & Marcus, P. S. 2005 Three-dimensional vortices in stratified protoplanetary disks. Astrophys. J. 623, 11571170.
Beckwith, K., Armitage, P. J. & Simon, J. B. 2011 Turbulence in global simulations of magnetized thin accretion discs. Mon. Not. R. Astron. Soc. 416, 361382.
Bhattacharjee, A. & Hameiri, E. 1986 Self-consistent dynamolike activity in turbulent plasmas. Phys. Rev. Lett. 57, 206209.
Blackman, E. G. 1998 Variability associated with alpha accretion disc theory for standard and advection-dominated discs. Mon. Not. R. Astron. Soc. 299, L48L52.
Blackman, E. G. 1999 On particle energization in accretion flows. Mon. Not. R. Astron. Soc. 302, 723730.
Blackman, E. G. 2004 How spectral shapes of magnetic energy and magnetic helicity influence their respective decay timescales. Plasma Phys. Control. Fusion 46, 423430.
Blackman, E. G. 2015 Magnetic helicity and large scale magnetic fields: a primer. Space Sci. Rev. 188 (1–4), 5991.
Blackman, E. G. & Brandenburg, A. 2002 Dynamic nonlinearity in large-scale dynamos with shear. Astrophys. J. 579, 359373.
Blackman, E. G. & Brandenburg, A. 2003 Doubly helical coronal ejections from dynamos and their role in sustaining the solar cycle. Astrophys. J. Lett. 584, L99L102.
Blackman, E. G. & Field, G. B. 2000a Constraints on the magnitude of ${\it\alpha}$ in dynamo theory. Astrophys. J. 534, 984988.
Blackman, E. G. & Field, G. B. 2000b Coronal activity from dynamos in astrophysical rotators. Mon. Not. R. Astron. Soc. 318, 724732.
Blackman, E. G. & Field, G. B. 2002 New dynamical mean-field dynamo theory and closure approach. Phys. Rev. Lett. 89 (26), 265007.
Blackman, E. G., Frank, A. & Welch, C. 2001 Magnetohydrodynamic stellar and disk winds: application to planetary nebulae. Astrophys. J. 546, 288298.
Blackman, E. G. & Lucchini, S. 2014 Using kinematic properties of pre-planetary nebulae to constrain engine paradigms. Mon. Not. R. Astron. Soc. 440, L16L20.
Blackman, E. G., Nauman, F. & Edgar, R. G.2010. Quantifying the imprecision of accretion theory and implications for multi-epoch observations of protoplanetary discs, arXiv: e-prints.
Blackman, E. G., Penna, R. F. & Varnière, P. 2008 Empirical relation between angular momentum transport and thermal-to-magnetic pressure ratio in shearing box simulations. New Astronomy 13, 244251.
Blackman, E. G. & Pessah, M. E. 2009 Coronae as a consequence of large-scale magnetic fields in turbulent accretion disks. Astrophys. J. Lett. 704, L113L117.
Blandford, R. D. & Begelman, M. C. 1999 On the fate of gas accreting at a low rate on to a black hole. Mon. Not. R. Astron. Soc. 303, L1L5.
Blandford, R. D. & Payne, D. G. 1982 Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883903.
Bodo, G., Cattaneo, F., Mignone, A. & Rossi, P. 2014 On the convergence of magnetorotational turbulence in stratified isothermal shearing boxes. Astrophys. J. Lett. 787, L13.
Bondi, H. 1952 On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195.
Brandenburg, A. 1998 Disc turbulence and viscosity. In Theory of Black Hole Accretion Disks (ed. Abramowicz, M. A., Björnsson, G. & Pringle, J. E.), pp. 6190. Cambridge University Press.
Brandenburg, A. & Donner, K. J. 1997 The dependence of the dynamo alpha on vorticity. Mon. Not. R. Astron. Soc. 288, L29L33.
Brandenburg, A., Nordlund, A., Stein, R. F. & Torkelsson, U. 1995 Dynamo-generated turbulence and large-scale magnetic fields in a Keplerian shear flow. Astrophys. J. 446, 741.
Brandenburg, A. & Subramanian, K. 2005 Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1209.
Calvet, N., D’Alessio, P., Watson, D. M., Franco-Hernández, R., Furlan, E., Green, J., Sutter, P. M., Forrest, W. J., Hartmann, L., Uchida, K. I., Keller, L. D., Sargent, B., Najita, J., Herter, T. L., Barry, D. J. & Hall, P. 2005 Disks in transition in the taurus population: spitzer IRS spectra of GM aurigae and DM tauri. Astrophys. J. Lett. 630, L185L188.
Campbell, C. G. 2000 An accretion disc model with a magnetic wind and turbulent viscosity. Mon. Not. R. Astron. Soc. 317, 501527.
Campbell, C. G. 2003 A semi-analytic solution for the radial and vertical structure of accretion discs with a magnetic wind. Mon. Not. R. Astron. Soc. 345, 123143.
Campbell, C. G. & Caunt, S. E. 1999 An analytic model for magneto-viscous accretion discs. Mon. Not. R. Astron. Soc. 306, 122136.
Charbonneau, P. 2014 Solar dynamo theory. Ann. Rev. Astron. Astrophys. 52, 251290.
Colgate, S. A., Cen, R., Li, H., Currier, N. & Warren, M. S. 2003 Cosmological mestel disks and the Rossby vortex instability: the origin of supermassive black holes. Astrophys. J. Lett. 598, L7L10.
Davis, S. W., Stone, J. M. & Pessah, M. E. 2010 Sustained magnetorotational turbulence in local simulations of stratified disks with zero net magnetic flux. Astrophys. J. 713, 5265.
De Villiers, J.-P. & Hawley, J. F. 2003 Global general relativistic magnetohydrodynamic simulations of accretion tori. Astrophys. J. 592, 10601077.
Ebrahimi, F. & Bhattacharjee, A. 2014 Helicity-flux-driven ${\it\alpha}$ effect in laboratory and astrophysical plasmas. Phys. Rev. Lett. 112 (12), 125003.
Ebrahimi, F. & Blackman, E. G. 2015 Large scale magnetohydrodynamic dynamos in cylinders. Phys. Rev. Lett. (submitted).
Field, G. B. & Rogers, R. D. 1993 Radiation from magnetized accretion disks in active galactic nuclei. Astrophys. J. 403, 94109.
Flock, M., Dzyurkevich, N., Klahr, H., Turner, N. & Henning, T. 2012 Large-scale azimuthal structures of turbulence in accretion disks: dynamo triggered variability of accretion. Astrophys. J. 744, 144.
Fromang, S. 2010 MHD simulations of the magnetorotational instability in a shearing box with zero net flux: the case $Pm=4$ . Astron. Astrophys. 514, L5.
Fromang, S. & Nelson, R. P. 2006 Global MHD simulations of stratified and turbulent protoplanetary discs. I. Model properties. Astron. Astrophys. 457, 343358.
Gabuzda, D. C., Christodoulou, D. M., Contopoulos, I. & Kazanas, D. 2012 Evidence for helical magnetic fields in kiloparsec-scale AGN jets and the action of a cosmic battery. J. Phys.: Conf. Ser. 355 (1), 012019.
Gammie, C. F. 1996 Linear theory of magnetized, viscous, self-gravitating gas disks. Astrophys. J. 462, 725.
Gammie, C. F. & Menou, K. 1998 On the origin of episodic accretion in dwarf novae. Astrophys. J. Lett. 492, L75L78.
Ghisellini, G., Tavecchio, F., Maraschi, L., Celotti, A. & Sbarrato, T. 2014 The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 515, 376378.
Ghosh, P. & Lamb, F. K. 1978 Disk accretion by magnetic neutron stars. Astrophys. J. Lett. 223, L83L87.
Gierliński, M. & Zdziarski, A. A. 1999 Accretion disk in CYG X-1 in the soft state. In High Energy Processes in Accreting Black Holes (ed. Poutanen, J. & Svensson, R.), Astronomical Society of the Pacific Conference Series, vol. 161, p. 64.
Gressel, O. 2010 A mean-field approach to the propagation of field patterns in stratified magnetorotational turbulence. Mon. Not. R. Astron. Soc. 405, 4148.
Guan, X. & Gammie, C. F. 2011 Radially extended, stratified, local models of isothermal disks. Astrophys. J. 728, 130.
Hartnoll, S. A. & Blackman, E. G. 2000 Reprocessed emission from warped accretion discs with application to X-ray iron line profiles. Mon. Not. R. Astron. Soc. 317, 880892.
Hawley, J. F., Gammie, C. F. & Balbus, S. A. 1996 Local three-dimensional simulations of an accretion disk hydromagnetic dynamo. Astrophys. J. 464, 690.
Hawley, J. F., Guan, X. & Krolik, J. H. 2011 Assessing quantitative results in accretion simulations: from local to global. Astrophys. J. 738, 84.
Heinemann, T., McWilliams, J. C. & Schekochihin, A. A. 2011 Large-scale magnetic field generation by randomly forced shearing waves. Phys. Rev. Lett. 107 (25), 255004.
Hoyle, F. & Lyttleton, R. A. 1939 The evolution of the stars. Proc. Camb. Phil. Soc. 35, 592.
Hubbard, A. & Brandenburg, A. 2011 Magnetic helicity flux in the presence of shear. Astrophys. J. 727, 11.
Hubbard, A., McNally, C. P., Oishi, J. S., Lyra, W. & Mac Low, M.-M.2014. Radial stresses and energy transport in accretion disks, arXiv: e-prints.
Ji, H. 2011 Current status and future prospects for laboratory study of angular momentum transport relevant to astrophysical disks. In IAU Symposium (ed. Bonanno, A., de Gouveia Dal Pino, E. & Kosovichev, A. G.), IAU Symposium, vol. 274, pp. 1825. Cambridge University Press.
Kant, I.1755 Universal Natural History and Theories of the Heaven. (1755a) Allgemeine Naturgeschichte und Theorie des Himmels oder Versuch von der Verfassung und dem mechanischen Ursprunge des ganzen Weltgebäudes, nach Newtonischen Grundsätzen abgehandelt (AK 1: 215–368). Engl. translation (1968) Universal Natural History and Theory of the Heavens, in W. Ley (ed.) Kant’s Cosmogony (New York: Greenwood Publishing).
Käpylä, P. J. & Korpi, M. J. 2011 Magnetorotational instability driven dynamos at low magnetic Prandtl numbers. Mon. Not. R. Astron. Soc. 413, 901907.
Kim, K. H., Watson, D. M., Manoj, P., Forrest, W. J., Najita, J., Furlan, E., Sargent, B., Espaillat, C., Muzerolle, J., Megeath, S. T., Calvet, N., Green, J. D. & Arnold, L. 2013 Transitional disks and their origins: an infrared spectroscopic survey of orion A. Astrophys. J. 769, 149.
King, A. R., Pringle, J. E. & Livio, M. 2007 Accretion disc viscosity: How big is alpha? Mon. Not. R. Astron. Soc. 376, 17401746.
Klahr, H. H. & Bodenheimer, P. 2003 Turbulence in accretion disks: vorticity generation and angular momentum transport via the global baroclinic instability. Astrophys. J. 582, 869892.
Kleeorin, N. I. & Ruzmaikin, A. A. 1981 Dynamics of the mean turbulent helicity in magnetic field. Magnetohydrodynamics. Magnetohydrodynamics 18, 116122.
Königl, A. 1989 Self-similar models of magnetized accretion disks. Astrophys. J. 342, 208223.
Kotko, I. & Lasota, J.-P. 2012 The viscosity parameter ${\it\alpha}$ and the properties of accretion disc outbursts in close binaries. Astron. Astrophys. 545, A115.
Küker, M., Henning, T. & Rüdiger, G. 2003 Magnetic star-disk coupling in classical $T$ tauri systems. Astrophys. J. 589, 397409.
Kuncic, Z. & Bicknell, G. V. 2004 Dynamics and energetics of turbulent, magnetized disk accretion around black holes: a first-principles approach to disk-corona-outflow coupling. Astrophys. J. 616, 669687.
Kuncic, Z. & Bicknell, G. V. 2007 Towards a new standard model for black hole accretion. Astrophys. Space Suppl. 311, 127135.
Kylafis, N. D. & Belloni, T. M. 2015 Accretion and ejection in black-hole x-ray transients. In Astrophysics and Space Science Library (ed. Contopoulos, I., Gabuzda, D. & Kylafis, N.), Astrophysics and Space Science Library, vol. 414, p. 245. EDP Sciences.
Lai, D. 2014 Theory of disk accretion onto magnetic stars. In European Physical Journal Web of Conferences, vol. 64, p. 1001. EDP Sciences.
Laplace, P.1796 Exposition du Sytéme du Monde, Reprinted in the Cambridge Library Collection; 2009, Cambridge University Press, ISBN-13: 978-1108002097.
Lesur, G. & Longaretti, P.-Y. 2005 On the relevance of subcritical hydrodynamic turbulence to accretion disk transport. Astron. Astrophys. 444, 2544.
Lesur, G. & Ogilvie, G. I. 2010 On the angular momentum transport due to vertical convection in accretion discs. Mon. Not. R. Astron. Soc. 404, L64L68.
Li, H., Finn, J. M., Lovelace, R. V. E. & Colgate, S. A. 2000 Rossby wave instability of thin accretion disks. II. detailed linear theory. Astrophys. J. 533, 10231034.
Lii, P. S., Romanova, M. M., Ustyugova, G. V., Koldoba, A. V. & Lovelace, R. V. E. 2014 Propeller-driven outflows from an MRI disc. Mon. Not. R. Astron. Soc. 441, 86100.
Longaretti, P.-Y. 2002 On the phenomenology of hydrodynamic shear turbulence. Astrophys. J. 576, 587598.
Lovelace, R. V. E., Li, H., Colgate, S. A. & Nelson, A. F. 1999 Rossby wave instability of Keplerian accretion disks. Astrophys. J. 513, 805810.
Lynden-Bell, D. 1969 Galactic nuclei as collapsed old quasars. Nature 223, 690694.
Lynden-Bell, D. 2006 Magnetic jets from swirling discs. Mon. Not. R. Astron. Soc. 369, 11671188.
Lynden-Bell, D. & Pringle, J. E. 1974 The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc. 168, 603637.
van der Marel, N., van Dishoeck, E. F., Bruderer, S., Birnstiel, T., Pinilla, P., Dullemond, C. P., van Kempen, T. A., Schmalzl, M., Brown, J. M., Herczeg, G. J., Mathews, G. S. & Geers, V. 2013 A major asymmetric dust trap in a transition disk. Science 340, 11991202.
Matt, S. & Pudritz, R. E. 2005 The spin of accreting stars: dependence on magnetic coupling to the disc. Mon. Not. R. Astron. Soc. 356, 167182.
McNally, C. P. & Pessah, M. E.2014. On vertically global, horizontally local models for astrophysical disks, arXiv: e-prints.
Miller, K. A. & Stone, J. M. 2000 The formation and structure of a strongly magnetized corona above a weakly magnetized accretion disk. Astrophys. J. 534, 398419.
Moss, D. & Shukurov, A. 2004 Accretion disc dynamos opened up by external magnetic fields. Astron. Astrophys. 413, 403414.
Moss, D., Shukurov, A. & Sokoloff, D. 2000 Accretion and galactic dynamos. Astron. Astrophys. 358, 11421150.
Mushotzky, R. F., Done, C. & Pounds, K. A. 1993 X-ray spectra and time variability of active galactic nuclei. Ann. Rev. Astron. Astrophys. 31, 717761.
Nauman, F. & Blackman, E. G. 2014 On characterizing non-locality and anisotropy for the magnetorotational instability. Mon. Not. R. Astron. Soc. 441, 18551860.
Nauman, F. & Blackman, E. G. 2015 Sensitivity of the magnetorotational instability to the shear parameter in stratified simulations. Mon. Not. R. Astron. Soc. 446, 21022109.
Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S. & Toomre, J. 2011 Buoyant magnetic loops in a global dynamo simulation of a Young Sun. Astrophys. J. Lett. 739, L38.
Nelson, N. J. & Miesch, M. S. 2014 Generating buoyant magnetic flux ropes in solar-like convective dynamos. Plasma Phys. Control. Fusion 56 (6), 064004.
Ogilvie, G. I. 2003 On the dynamics of magnetorotational turbulent stresses. Mon. Not. R. Astron. Soc. 340, 969982.
Paoletti, M. S. & Lathrop, D. P. 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106 (2), 024501.
Parkin, E. R. & Bicknell, G. V. 2013 Global simulations of magnetorotational turbulence – I. Convergence and the quasi-steady state. Mon. Not. R. Astron. Soc. 435, 22812298.
Penna, R. F., Narayan, R. & Sa̧dowski, A. 2013 General relativistic magnetohydrodynamic simulations of Blandford-Znajek jets and the membrane paradigm. Mon. Not. R. Astron. Soc. 436, 37413758.
Penna, R. F., Sa̧owski, A. & McKinney, J. C. 2012 Thin-disc theory with a non-zero-torque boundary condition and comparisons with simulations. Mon. Not. R. Astron. Soc. 420, 684698.
Pérez, L. M., Isella, A., Carpenter, J. M. & Chandler, C. J. 2014 Large-scale asymmetries in the transitional disks of SAO 206462 and SR 21. Astrophys. J. Lett. 783, L13.
Perna, R., Bozzo, E. & Stella, L. 2006 On the spin-up/spin-down transitions in accreting x-ray binaries. Astrophys. J. 639, 363376.
Pessah, M. E., Chan, C.-K. & Psaltis, D. 2006 Local model for angular-momentum transport in accretion disks driven by the magnetorotational instability. Phys. Rev. Lett. 97 (22), 221103.
Pessah, M. E., Chan, C.-K. & Psaltis, D. 2007 Angular momentum transport in accretion disks: scaling laws in MRI-driven turbulence. Astrophys. J. Lett. 668, L51L54.
Pessah, M. E., Chan, C.-K. & Psaltis, D. 2008 The fundamental difference between shear alpha viscosity and turbulent magnetorotational stresses. Mon. Not. R. Astron. Soc. 383, 683690.
Pipin, V. V. & Pevtsov, A. A. 2014 Magnetic helicity of the global field in solar cycles 23 and 24. Astrophys. J. 789, 21.
Pouquet, A., Frisch, U. & Leorat, J. 1976 Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321354.
Prendergast, K. H. & Burbidge, G. R. 1968 On the nature of some galactic x-ray sources. Astrophys. J. Lett. 151, L83.
Pudritz, R. E., Hardcastle, M. J. & Gabuzda, D. C. 2012 Magnetic fields in astrophysical jets: from launch to termination. Space Sci. Rev. 169, 2772.
Quataert, E., Heinemann, T. & Spitkovsky, A.2014. Linear instabilities driven by differential rotation in very weakly magnetized plasmas, arXiv: e-prints.
Quataert, E. & Narayan, R. 1999 Spectral models of advection-dominated accretion flows with winds. Astrophys. J. 520, 298315.
Regev, O. & Umurhan, O. M. 2008 On the viability of the shearing box approximation for numerical studies of MHD turbulence in accretion disks. Astron. Astrophys. 481, 2132.
Rekowski, M. v., Rüdiger, G. & Elstner, D. 2000 Structure and magnetic configurations of accretion disk-dynamo models. Astron. Astrophys. 353, 813822.
Reynolds, C. S. 2014 Measuring black hole spin using x-ray reflection spectroscopy. Space Sci. Rev. 183, 277294.
Risaliti, G., Harrison, F. A., Madsen, K. K., Walton, D. J., Boggs, S. E., Christensen, F. E., Craig, W. W., Grefenstette, B. W., Hailey, C. J., Nardini, E., Stern, D. & Zhang, W. W. 2013 A rapidly spinning supermassive black hole at the centre of NGC 1365. Nature 494, 449451.
Romanova, M. M., Ustyugova, G. V., Koldoba, A. V. & Lovelace, R. V. E. 2012 MRI-driven accretion on to magnetized stars: global 3D MHD simulations of magnetospheric and boundary layer regimes. Mon. Not. R. Astron. Soc. 421, 6377.
Rüdiger, G. 1987 Turbulence theory and the frictional energy source in accretion disk models. Acta Astronomica 37, 223.
Rüdiger, G., Elstner, D. & Schultz, M. 1993 Dynamo-driven accretion in galaxies. Astron. Astrophys. 270, 5359.
Rüdiger, G. & Kichatinov, L. L. 1993 Alpha-effect and alpha-quenching. Astron. Astrophys. 269, 581588.
Salpeter, E. E. 1964 Accretion of interstellar matter by massive objects. Astrophys. J. 140, 796800.
Sa̧dowski, A., Narayan, R., Tchekhovskoy, A., Abarca, D., Zhu, Y. & McKinney, J. C. 2015 Global simulations of axisymmetric radiative black hole accretion discs in general relativity with a mean-field magnetic dynamo. Mon. Not. R. Astron. Soc. 447, 4971.
Schartman, E., Ji, H., Burin, M. J. & Goodman, J. 2012 Stability of quasi-Keplerian shear flow in a laboratory experiment. Astron. Astrophys. 543, A94.
Seehafer, N. 1990 Electric current helicity in the solar atmosphere. Solar Phys. 125, 219232.
Shakura, N. I. & Postnov, K. A.2014. On properties of Velikhov-Chandrasekhar MRI in ideal and non-ideal plasma, arXiv: e-prints.
Shakura, N. I. & Sunyaev, R. A. 1973 Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337355.
Shklovskii, I. S. 1963 On the nature of radio galaxies. Sov. Astron. 6, 465.
Shukurov, A., Sokoloff, D., Subramanian, K. & Brandenburg, A. 2006 Galactic dynamo and helicity losses through fountain flow. Astron. Astrophys. 448, L33L36.
Simon, J. B., Hawley, J. F. & Beckwith, K. 2011 Resistivity-driven state changes in vertically stratified accretion disks. Astrophys. J. 730, 94.
Sorathia, K. A., Reynolds, C. S., Stone, J. M. & Beckwith, K. 2012 Global simulations of accretion disks. I. convergence and comparisons with local models. Astrophys. J. 749, 189.
Squire, J. & Bhattacharjee, A.2015a Coherent nonhelical shear dynamos driven by magnetic fluctuations at low Reynolds numbers, arXiv:1507.03154.
Squire, J. & Bhattacharjee, A.2015b Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence, arXiv:1508.01566.
Stapelfeldt, K. R., Duchêne, G., Perrin, M., Wolff, S., Krist, J. E., Padgett, D. L., Ménard, F. & Pinte, C. 2014 HST imaging of new edge-on circumstellar disks in nearby star-forming regions. In IAU Symposium (ed. Booth, M., Matthews, B. C. & Graham, J. R.), vol. 299, pp. 99103. Cambridge University Press.
Stepanovs, D., Fendt, C. & Sheikhnezami, S. 2014 Modeling MHD accretion–ejection: episodic ejections of jets triggered by a mean-field disk dynamo. Astrophys. J. 796, 29.
Strauss, H. R. 1985 The dynamo effect in fusion plasmas. Phys. Fluids 28, 27862792.
Suzuki, T. K. & Inutsuka, S.-i. 2014 Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields. Astrophys. J. 784, 121.
Swedenborg, E.1734. (Principia) Latin: Opera Philosophica et Mineralia (English: Philosophical and Mineralogical Works) I.
Tagger, M. & Pellat, R. 1999 An accretion–ejection instability in magnetized disks. Astron. Astrophys. 349, 10031016.
Taylor, G. B. & Perley, R. A. 1993 Magnetic fields in the hydra a cluster. Astrophys. J. 416, 554.
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.
Tremaine, S. & Davis, S. W. 2014 Dynamics of warped accretion discs. Mon. Not. R. Astron. Soc. 441, 14081434.
Van Eck, C. L., Brown, J. C., Shukurov, A. & Fletcher, A. 2015 Magnetic fields in a sample of nearby spiral galaxies. Astrophys. J. 799, 35.
Varnière, P. & Tagger, M. 2002 Accretion-ejection instability in magnetized disks: feeding the corona with Alfvén waves. Astron. Astrophys. 394, 329338.
Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. J. Exp. Theoret. Phys. 36, 13981404.
Vishniac, E. T. 2009 The saturation limit of the magnetorotational instability. Astrophys. J. 696, 10211028.
Vishniac, E. T. & Cho, J. 2001 Magnetic helicity conservation and astrophysical dynamos. Astrophys. J. 550, 752760.
Vorobyov, E. I. & Basu, S. 2007 Self-regulated gravitational accretion in protostellar discs. Mon. Not. R. Astron. Soc. 381, 10091017.
Yousef, T. A., Heinemann, T., Schekochihin, A. A., Kleeorin, N., Rogachevskii, I., Iskakov, A. B., Cowley, S. C. & McWilliams, J. C. 2008 Generation of magnetic field by combined action of turbulence and shear. Phys. Rev. Lett. 100 (18), 184501.
Yuan, F. & Narayan, R. 2014 Hot accretion flows around black holes. Ann. Rev. Astron. Astrophys. 52, 529588.
Zel’dovich, Y. B. 1964 The fate of a star and the evolution of gravitational energy upon accretion. Sov. Phys. Dokl. 9, 195.
Zhang, H., Moss, D., Kleeorin, N., Kuzanyan, K., Rogachevskii, I., Sokoloff, D., Gao, Y. & Xu, H. 2012 Current helicity of active regions as a tracer of large-scale solar magnetic helicity. Astrophys. J. 751, 47.
Zhang, S.-N. 2013 Black hole binaries and microquasars. Frontiers Phys. 8, 630660.
Zhu, Z., Hartmann, L., Gammie, C. & McKinney, J. C. 2009 Two-dimensional simulations of FU orionis disk outbursts. Astrophys. J. 701, 620634.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

Motivation and challenge to capture both large-scale and local transport in next generation accretion theory

  • Eric G. Blackman (a1) (a2) and Farrukh Nauman (a1)
  • Please note a correction has been issued for this article.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

A correction has been issued for this article: