Skip to main content Accessibility help

Molecular dynamics of Yukawa liquids in gravitation: Equilibrium, Instability and Transport

  • Harish Charan (a1), Rajaraman Ganesh (a1) and Ashwin Joy (a1)


Using 2D molecular dynamics (MD) simulation, the equilibrium and dynamical properties of a gravitationally equilibrated Yukawa liquid are investigated. We observe that due to asymmetry introduced in one direction by gravity, several interesting features arise. For example, for a given value of coupling parameter Γ, screening parameter κ and according to a chosen value of gravitational force g (say in y-direction), the system is seen to exhibit super-, sub- or normal diffusion. Interestingly, x-averaged density profiles, unlike a barotropic fluid, acquire sharp, free surface with scale free linear y-dependence. As can be expected for a system with macroscopic gradients, self-diffusion calculated from Green–Kubo's (GK) formalism does not agree with that obtained from Einstein–Smoluchowski (ES) diffusion. A 2D-angular radial pair correlation function g(r, θ) clearly indicates asymmetric features induced by gravity. We observe that due to compression in y-direction, though in liquid state for all values of gravity considered, the transverse mode is found to be predominant as compared to the longitudinal mode, leading to a novel Anisotropic Solid-like Yukawa liquid (ASYL). In in-homogenous Yukawa liquids studied here, Mach cones are found to be asymmetric. When density gradient direction is set in the direction opposite to gravity, the equilibrium is shown to be unstable to Rayleigh–Taylor (RT) instabilities resulting in transport.


Corresponding author

Email address for correspondence:


Hide All
Arp, O., Block, D., Bonitz, M., Fehske, H., Golubnychiy, V., Kosse, S., Ludwig, P., Melzer, A. and Piel, A. 2005 J.Phys.: Conf. Ser. 11 (1), 234.
Ashwin, J. and Ganesh, R. 2010 Kelvin helmholtz instability in strongly coupled yukawa liquids. Phys. Rev. Lett. 104, 215 003.
Beeman, D. 1976 J. Comput. Phys. 20, 130.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability, 1st edn.Dover Publications, ch. 10, pp. 428490.
Charan, H., Ganesh, R. and Joy, A. 2014 Phys. Plasmas (1994-present) 21 (4), 043702.
Chu, J. H. and Lin, I. 1994 Phys. Rev. Lett. 72, 40094012.
Ciccotti, G., Hoover, W. G. and di Fisica, Societá Italiana 1986 Molecular Dynamics Simulation of Statistical Mechanical Systems: Varenna on Lake Como, Villa Monastero, 23 July - 2 August 1985. North-Holland.
Donk, Z., Kalman, G. J. and Hartmann, P. 2008 Dynamical correlations and collective excitations of yukawa liquids. J. Phys.: Condens. Matter 20 (41), 413 101.
Dubin, D. H. E. 2000 Phys. Plasmas (1994-present) 7 (10), 3895.
Evans, D. J. 1983 J. Chem. Phys. 78, 3297.
Evans, D. J., Hoover, W. G., Failor, B. H., Moran, B. and Ladd, A. J. C. 1983 Phys. Rev. A 28, 1016.
Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. and Morfill, G. E. 2005 Phys. Rep. 421 (12), 1.
Frenkel, D. and Smit, B. 1996 Understanding Molecular Simulation: From Algorithms to Applications (Computational Science), 1st edn.Academic Press, ch. 4, pp. 7881.
Goertz, C. K. and Morfill, G. E. 1983 Icarus 55 (1), 219.
Goertz, C. K. and Shan, L. 1988 Geophys. Res. Lett. 15, 84.
Hamaguchi, S. 1999 Plasmas and Ions 2, 57.
Hartmann, P., Kalman, G. J., Donko, Z. and Kutasi, K. 2005 Phys. Rev. E 72, 026 409.
Hebner, G. A. and Riley, M. E. 2004 Phys. Rev. E 69, 026 405.
Hebner, G. A., Riley, M. E. and Marder, B. M. 2003 Phys. Rev. E 68, 016 403.
Hill, J. R. and Mendis, D. A. 1981 Moon Planets 24, 431.
Hou, L.-J., Piel, A. and Shukla, P. K. 2009a Phys. Rev. Lett. 102, 085 002.
Hou, L.-J., Piel, A. and Shukla, P. K. 2009b Phys. Rev. Lett. 102, 085 002.
Islam, M. A. 2004 Phys. Scr. 70 (2–3), 120.
Kai, Kadau, Barber, J. L., Germann, T. C., Holian, B. L. and Alder, B. J. 2010 Phil. Trans. R. Soc. A 368 (1916), 1547.
Kalman, G., Rosenberg, M. and DeWitt, H. E. 2000 Phys. Rev. Lett. 84, 6030.
Khrapak, S. A., Ivlev, A. V. and Morfill, G. E. 2004 Phys. Rev. E 70, 056 405.
Kubo, R. 1966 Rep. Prog. Phys. 29 (1), 255.
Levesque, D. and Verlet, L. 1993 J. Stat. Phys. 72, 519.
Ma, Z. W. and Bhattacharjee, A. 2002 Phy. Plasmas (1994-present) 9 (8), 3349.
Melzer, A., Nunomura, S., Samsonov, D., Ma, Z. W. and Goree, J. 2000a Phys. Rev. E 62, 4162.
Melzer, A., Schweigert, V. A. and Piel, A. 2000b Measurement of the wakefield attraction for ‘dust plasma molecules’. Phys. Scr. 61 (4), 494.
Melzer, A., Trottenberg, T. and Piel, A. 1994 Phys. Lett. A 191 (3), 301.
Merlino, R. L. and Goree, J. A. 2004 Phys. Today 57 (7), 32.
Morfill, G. E. and Ivlev, A. V. 2009 Rev. Mod. Phys. 81, 1353.
Nosenko, V. and Goree, J. 2004 Phys. Rev. Lett. 93 (15), 155 004.
Ohta, H. and Hamaguchi, S. 2000 Phys. Plasmas (1994-present) 7 (11), 45064514.
Piel, A. and Melzer, A. 2002 Plasma Phys. Control. Fusion 44 (1), R1.
Pieper, J. B., Goree, J. and Quinn, R. A. 1996 J. Vac. Sci. Technol. A 14 (2), 519–52.
Popel, S. I., Kopnin, S. I., Golub', A. P., Dol'nikov, G. G., Zakharov, A. V., Zelenyi, L. M. and Izvekova, Y. N. 2013 Solar Syst. Res. 47 (6), 419.
Samsonov, D. and Goree, J. 1999 Phys. Rev. E 59, 1047.
Samsonov, D., Goree, J., Ma, Z. W., Bhattacharjee, A., Thomas, H. M. and Morfill, G. E. 1999 Phys. Rev. Lett. 83, 3649.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed