Skip to main content Accessibility help
×
Home

Magnetorotational stability in a self-consistent three dimensional axisymmetric magnetized warm plasma equilibrium with a gravitational field

  • Peter J. Catto (a1) and Sergei I. Krasheninnikov (a2)

Abstract

Magnetorotational stability is revisited for self-consistent three-dimensional magnetized hot plasma equilibria in a gravitational field. The eikonal analysis presented finds that magnetorotational stability analysis must be performed with some care to retain compressibility and density gradient effects, and departures from strict Keplerian motion. Indeed, retaining these effects highlights differences between the magnetorotational instability found in the absence of gravity (Velikhov, Sov. Phys. JETP, vol. 36, 1959, pp. 995–998) and that found the presence of gravity (Balbus & Hawley, Astrophys. J., vol. 376, 1991, pp. 214–222). In the non-gravitational case, compressibility and density variation alter the stability condition, while these effects only enter for departures from strict Keplerian motion in a gravitational field. The conditions for instability are made more precise by employing recent magnetized equilibrium results (Catto et al., J. Plasma Phys., vol. 81, 2015, 515810603), rather than employing a hydrodynamic equilibrium. We focus on the stability of the $\unicode[STIX]{x1D6FD}>1$ limit for which equilibria were found in the absence of a toroidal magnetic field, where $\unicode[STIX]{x1D6FD}=$  plasma/magnetic pressure.

Copyright

Corresponding author

Email address for correspondence: catto@psfc.mit.edu

References

Hide All
Balbus, S. A. 2006 Magnetorotational instability. Scholarpedia 4 (7), 2409.
Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214222.
Blaes, O. M. 2004 Physics fundamentals of luminous accretion disks around black holes. In Proc. LXXVIII of Les Houches Summer School, Chamonix, France (ed. Menard, F., Pelletier, G., Beskin, V. & Dalibard, J.), pp. 137185. Springer.
Catto, P. J., Bernstein, I. B. & Tessarotto, M. 1987 Ion transport in toroidally rotating tokamak plasmas. Phys. Fluids 30, 27842795.
Catto, P. J. & Krasheninnikov, S. I. 2015 A rotating and magnetized three-dimensional hot plasma equilibrium in a gravitational field. J. Plasma Phys. 81, 105810301, 11 pages.
Catto, P. J., Pusztai, I. & Krasheninnikov, S. I. 2015 Axisymmetric global gravitational equilibrium for magnetized, rotating hot plasma. J. Plasma Phys. 81, 515810603, 18 pages.
Hawley, J. F. & Balbus, S. A. 1991 A powerful local shear instability in weakly magnetized disks. II. Nonlinear evolution. Astrophys. J. 376, 223233.
Hawley, J. F., Gammie, C. F. & Balbus, S. A. 1995 Local three-dimensional magnetohydrodyanmic simulations of accretion disks. Astrophys. J. 440, 742763.
Hawley, J. F., Gammie, C. F. & Balbus, S. A. 1996 Local three-dimensional simulations of an accretion disk hydromagnetic dynamo. Astrophys. J. 464, 690703.
Helander, P. 2014 Theory of plasma confinement in non-axisymmetric magnetic fields. Rep. Prog. Phys. 77, 087001, 35 pages.
Hinton, F. L. & Wong, S. K. 1985 Neoclassical ion transport in rotating axisymmetric plasmas. Phys. Fluids 28, 30823098.
McNally, C. P. & Pessah, M. E. 2015 On vertically global, horizontally local models for astrophysical disks. Astrophys. J. 811:121, (22 pp).
Ogilvie, G. I. 1998 Waves and instabilities in a differentially rotating disc containing a poloidal magnetic field. Mon. Not. R. Astron. Soc. 297, 291314.
Papaloizou, J. C. B. & Pringle, J. E. 1984 The dynamical stability of differentially rotating discs with constant specific angular momentum. Mon. Not. R. Astron. Soc. 208, 721750.
Stone, J. M., Gammie, C. F., Balbus, S. A. & Hawley, J. F. 2000 Protostars and Planets IV (ed. Mannings, V., Boss, A. & Russell, S.), Space Science Reviews, pp. 589611. University of Arizona.
Stone, J. M., Hawley, J. F., Gammie, C. F. & Balbus, S. A. 1996 Three-dimensional magnetohydrodyanmic simulations of vertically stratified accretion disks. Astrophys. J. 463, 656673.
Stone, J. M. & Pringle, J. E. 2001 Magnetohydrodynamic non-radiative accretion flows in two dimensions. Mon. Not. R. Astron. Soc. 322, 461472.
Stone, J. M., Pringle, J. E. & Begelman, M. C. 1999 Hydrodynamic non-radiative accretion flows in two dimensions. Mon. Not. R. Astron. Soc. 310, 10021016.
Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 36, 995998.
Wheeler, J. C. 2004 Summary of the workshop on gamma-ray burst afterglows at the 34th COSPAR meeting. Adv. Space Res. 34, 27192744.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Magnetorotational stability in a self-consistent three dimensional axisymmetric magnetized warm plasma equilibrium with a gravitational field

  • Peter J. Catto (a1) and Sergei I. Krasheninnikov (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed