Skip to main content Accessibility help
×
Home

The magnetized dusty plasma experiment (MDPX)

  • E. Thomas (a1), U. Konopka (a1), D. Artis (a1), B. Lynch (a1), S. Leblanc (a1), S. Adams (a1), R. L. Merlino (a2) and M. Rosenberg (a3)...

Abstract

The magnetized dusty plasma experiment (MDPX) is a newly commissioned plasma device that started operations in late spring, 2014. The research activities of this device are focused on the study of the physics, highly magnetized plasmas, and magnetized dusty plasmas. The design of the MDPX device is centered on two main components: an open bore, superconducting magnet that is designed to produce, in a steady state, both uniform magnetic fields up to 4 Tesla and non-uniform magnetic fields with gradients of 1–2 T m−1 and a flexible, removable, octagonal vacuum chamber that provides substantial probe and optical access to the plasma. This paper will provide a review of the design criteria for the MDPX device, a description of the research objectives, and brief discussion of the research opportunities offered by this multi-institution, multi-user project.

Copyright

Corresponding author

Email address for correspondence: etjr@auburn.edu

References

Hide All
Adrian, R. 2005 Twenty years of particle image velocimetry. Exp. Fluids 39, 159.
Barkan, A., D'Angelo, N. and Merlino, R. 1994 Charging of dust grains in a plasma. Phys. Rev. Lett. 73, 3093.
Barkan, A., Merlino, R. L. and D'Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 3563.
Carstensen, J., Greiner, F. and Piel, A. 2012 Ion-wake-mediated particle interaction in a magnetized-plasma flow. Phys. Rev. Lett. 109, 135001.
Chang, J. S. and Spariosu, K. 1993 Dust particle charging characteristics under a collisionless magneto-plasma. J. Phys. Soc. Japan 62, 97.
Chen, F. F. 2006 Introduction to Plasma Physics and Controlled Fusion, 2nd edn. Volume 1: Plasma Physics, New York, NY: Springer, p. 19.
Chu, J. H. and Lin, I., 1994 Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 72, 4009.
Cianciosa, M. 2012 ‘Measurements and modifications of sheared flows and stability on the Compact Toroidal Hybrid stellarator', Ph.D. dissertation, Auburn University.
DaVis (Data Visualization). 2013 Software, Version 8.0, LaVision GmbH. Göttingen, Germany.
DeBleeker, K., Bogaerts, A. and Goedheer, W. 2005 Role of the thermophoretic force on the transport of nanoparticles in dusty silane plasmas. Phys. Rev. E 71, 066405.
Deschenaux, Ch., Affolter, A., MAgni, D., Hollenstein, Ch. and Fayet, P. 1999 Investigations of CH4, C2H2 and C2H4 dusty RF plasmas by means of FTIR absorption spectroscopy and mass spectrometry. J. Phys. D: Appl. Phys. 32, 1876.
DuBois, A. M., Eadon, A. C. and Thomas, E. 2013 Electron-ion hybrid instability experiment upgrades to the Auburn linear experiment for instability studies. Rev. Sci. Instrum. 84, 043503.
Eadon, A. C., Tejero, E., DuBois, A. and Thomas, E. 2011 Upgrades to the Auburn linear experiment for instability studies. Rev. Sci. Instrum. 82, 063511.
Goertz, C. 1989 Dusty plasmas in the solar system. Rev. Geophys. and Space Phys. 27, 271.
Goertz, C. and Morfill, G. 1983 A model for the formation of spokes in Saturn's ring. Icarus 53, 219.
Goldston, R. J. and Rutherford, P. H. 1997 Introduction to Plasma Physics, London: Institute of Physics Publishing, p. 19.
Greiner, F., Carstensen, J., Köhler, N., Pilch, I., Ketelsen, H., Knish, S. and Piel, A. 2012 Imaging Mie ellipsometry: dynamics of nanodust clouds in an argon–acetylene plasma. Plasma Sources Sci. Technol. 21, 065005.
Gurnett, D., Grün, E., Gallagher, D., Kurth, W. and Scarf, F. 1983 Micron-sized particles detected near saturn by the voyager plasma wave instrument. Icarus 53, 236.
Hutchinson, I. H. 1990 Introduction to Plasma Diagnostics, Cambridge, UK: Cambridge University Press, p. 66.
Kaw, P. K., Nishikawa, K. and Sato, N. 2002 Rotation in collisional strongly coupled dusty plasmas in a magnetic field. Phys. Plasmas 9, 387.
Khrapak, S. A., Ivlev, A. V. and Morfill, G. E. 2004 Momentum transfer in complex plasmas. Phys. Rev. E 70, 056405.
Khrapak, S. A., Ivlev, A. V., Morfill, G. E. and Zhdanov, S. 2003 Scattering in the attractive yukawa potential in the limit of strong interaction. Phys. Rev. Lett. 90, 225002.
Kivelson, M. G. 1995 Physics of space plasmas. In: Introduction to Space Physics, (eds. Kivelson, M. G. and Russell, C. T.). Cambridge, UK: Cambridge University Press, p. 27.
Knist, S., Greiner, F., Biss, F. and Piel, A. 2011 Influence of negative ions on drift waves in a low-density Ar/O2-Plasma. Contrib. Plasma Phys. 51, 769.
Konopka, U., Morfill, G. E. and Ratke, L., 2000 Measurement of the interaction potential of microspheres in the sheath of a Rf discharge. Phys. Rev. Lett. 84, 891.
Konopka, U., Schwabe, M., Knapek, C., Kretschmer, M. and Morfill, G. E. 2005 Complex plasmas in strong magnetic field environments. In: New Vistas in Dusty Plasmas: 4th Int. Conf. on the Physics of Dusty Plasmas, (eds. Boufendi, L., Mikkian, M. and Shukla, P. K.), AIP Press, CP799 (Orleans, France), p. 181.
Langmuir, I., Found, C. and Dittmer, A. 1924 A new type of electric discharge: the streamer discharge. Science 60, 392.
Melzer, A., Klindworth, M. and Piel, A. 2001 Normal modes of 2D finite clusters in complex plasmas. Phys. Rev. Lett. 87, 115002.
Mestel, L. and Spitzer, L. Jr. 1956 Star formation in magnetic dust clouds. Mon. Not. R. Astron. Soc. 116, 503.
Mitchell, N., Bessette, D., Gallix, R., Jong, C., Knaster, J., Libeyre, P., Sborchia, C. and Simon, F. 2008 The ITER magnet system. IEEE Trans. Appl. Superconductivity 18, 435.
Miyamoto, K. 1987 Plasma Physics for Nuclear FusionRevised Edition, Cambridge, MA: The MIT Press, p. 12.
Nambu, M., Salimullah, M. and Bingham, R. 2001 Effect of a magnetic field on the wake potential in a dusty plasma with streaming ions. Phys. Rev. E 63, 056403.
Piel, A., Nosenko, V. and Goree, J. 2006 Laser-excited shear waves in solid and liquid two-dimensional dusty plasmas. Phys. Plasmas 13, 042104.
Pilch, I., Reichstein, T. and Piel, A. 2008 Torus-shaped dust clouds trapped in a magnetized anodic plasma. Phys. Plasmas 15, 103706.
Puttscher, M. and Melzer, A. 2014 Paramagnetic dust particles in rf-plasmas with weak external magnetic fields. New J. Phys. 16, 043026.
Rosenberg, M. 1993 Ion- and dust-acoustic instabilities in dusty plasmas. Planet. Space Sci. 41, 229.
Rosenberg, M., Merlino, R. and Shukla, P. K. 2011 On the possibility of refraction of dust acoustic waves. J. Plasma Phys. 77, 231.
Rynn, N. and D'Angelo, N. 1960 Device for generating a low temperature, highly ionized cesium plasma. Rev. Sci. Instrum. 31, 1326.
Salimullah, M., Torney, M., Shukla, P. K. and Banerjee, A. K. 2003 Three-dimensional wavefields in a magnetized dusty plasma with streaming ions. Phys. Scripta 67, 534.
Sato, N., Uchida, G., Kaneko, T., Shimizu, S. and Iizuka, S. 2001 Dynamics of fine particles in magnetized plasmas. Phys. Plasmas 8, 1786.
Schwabe, M., Konopka, U., Bandyopadhyay, P. and Morfill, G. E. 2011 Pattern formation in a complex plasma in high magnetic fields. Phys. Rev. Lett. 106, 215004.
Selwyn, G., McKillop, J., Haller, K. and Wu, J. 1990 In situ plasma contamination measurements by HeNe laser light scattering: a case study. J. Vac. Sci. Technol. A: Vacuum 8, 1726.
Selwyn, G., Singh, J. and Bennett, R. 1989 In situ laser diagnostic studies of plasma-generated particulate contamination. J. Vac. Sci. Technol. A: Vacuum 7, 2758.
Shukla, P. K. and Mamun, A. A. 2002 Introduction Dusty Plasma Physics, London: Institute of Physics Publishing, p. 36.
Tadsen, B., Greiner, F. and Piel, A. 2014 Preparation of magnetized nanodusty plasmas in a radio frequency-driven parallel-plate reactor. Phys. Plasmas 21, 103704.
Thomas, E. 1999 Direct measurements of two-dimensional velocity profiles in direct current glow discharge dusty plasmas. Phys. Plasmas 6, 2672.
Thomas, E. Jr., Avinash, K. and Merlino, R. L. 2004 Probe induced voids in a dusty plasma. Phys. Plasmas 11, 1770.
Thomas, E. Jr., Merlino, R. L. and Rosenberg, M. 2012 Magnetized dusty plasmas: the next frontier for complex plasma research. Plasma Phys. Control. Fusion 54, 4034.
Thomas, E. and Watson, M. 2000 Charging of silica particles in an argon dusty plasma. Phys. Plasmas 7, 3194.
Thomas, E. Jr., Williams, J. D. and Silver, J. 2004 Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma. Phys. Plasmas 11, L37.
Thomas, H., Morfill, G. E., Demmel, V., Goree, J., Feuerbacker, B. and Mölmann, D. 1994 Plasma crystal: coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652.
Thompson, C., Barkan, A., D'Angelo, N. and Merlino, R. L. 1997 Dust acoustic waves in a direct current glow discharge. Phys. Plasmas 4, 2331.
Thompson, C. O., D'Angelo, N. and Merlino, R. L. 1999 The interaction of stationary and moving objects with dusty plasmas. Phys. Plasmas 6, 1421.
Trottenburg, T., Melzer, A. and Piel, A. 1995 Measurement of the electric charge on particulates forming Coulomb crystals in the sheath of a radiofrequency plasma. Plasma Sources Sci. Technol. 4, 450.
Tsytovich, V. N., Sato, N. and Morfill, G. E. 2003 Note on the charging and spinning of dust particles in complex plasmas in a strong magnetic field. New J. Phys. 5, 43.
Vasiliev, M. M., D'yachkov, L. G., Antipov, S. N., Huijink, R., Petrov, O. F. and Fortov, V. E. 2011 Dynamics of dust structures in a dc discharge under action of axial magnetic field. EPL: Europhys. Lett. 93, 15001.
Vasil'ev, M. M., D'yachkov, L. G., Antipov, S. N., Petrov, O. F. and Fortov, V. E. 2007 Dusty plasma structures in magnetic fields in a dc discharge. J. Exp. Theo. Phys. Lett. 86, 358.
Verplancke, Ph., Chodura, R., Noterdaeme, J.-M. and Weinlich, M. 1996 Characteristics of a Langmuir probe in a magnetic field with high sweep frequencies. Contrib. Plasma Phys. 36, S145.
Walch, B., Horányi, M. and Robertson, S. 1995 Charging of dust grains in plasma with energetic electrons. Phys. Rev. Lett. 75, 838.
Williams, J. and Thomas, E. Jr. 2006 Initial measurement of the kinetic dust temperature of a weakly coupled dusty plasma. Phys. Plasmas 13, 063509.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed