Skip to main content Accessibility help
×
Home

Magnetic-field generation by the ablative nonlinear Rayleigh–Taylor instability

  • Philip M. Nilson (a1) (a2), L. Gao (a1) (a3), I. V. Igumenshchev (a1), G. Fiksel (a1), R. Yan (a1) (a2) (a3), J. R. Davies (a1) (a2) (a3), D. Martinez (a4), V. A. Smalyuk (a4), M. G. Haines (a5), E. G. Blackman (a1) (a6), D. H. Froula (a1), R. Betti (a1) (a2) (a3) (a6) and D. D. Meyerhofer (a1) (a2) (a3) (a6)...

Abstract

Experiments reporting magnetic-field generation by the ablative nonlinear Rayleigh–Taylor (RT) instability are reviewed. The experiments show how large-scale magnetic fields can, under certain circumstances, emerge and persist in strongly driven laboratory and astrophysical flows at drive pressures exceeding one million times atmospheric pressure.

Copyright

Corresponding author

Email address for correspondence: pnil@lle.rochester.edu

References

Hide All
Alon, U., Hecht, J., Mukamel, D. and Shvarts, D. 1994 Scale invariant mixing rates of hydrodynamically unstable interfaces. Phys. Rev. Lett. 72, 28672870.
Atzeni, S. 2004 The Physics of Inertial Fusion. Oxford: Clarendon.
Betti, R. and Sanz, J. 2006 Bubble acceleration in the ablative Rayleigh–Taylor instability. Phys. Rev. Lett. 97, 205 002.
Borghesi, M.et al. 2004 Multi-MeV proton source investigations in ultraintense laser-foil interactions. Phys. Rev. Lett. 92, 055 003.
Braginskii, S. I. 1965 Review of Plasma Physics. New York: Consultant Bureau.
Clark, E. L. 2001 PhD thesis, “Measurements of Energetic Particles from Ultra Intense Laser Plasma Interactions.” University of London.
Cowan, T. E.et al. 2004 Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204 801.
Dimotakis, P. E. 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409, 6998.
Drake, R. P. 2006 High-Energy-Density Physics, Springer/Berlin/Heidelberg.
Evans, R. G. 1986 The influence of self-generated magnetic fields on the Rayleigh–Taylor instability. Plasma Phys. Control. Fusion 28 (7), 1021.
Gao, L. 2014 Measurements of magnetohydrodynamic effects in ablatively-driven high energy density systems. PhD Thesis, University of Rochester, Rochester NY.
Gao, L.et al. 2013 Observation of self-similarity in the magnetic fields generated by the ablative nonlinear Rayleigh–Taylor instability. Phys. Rev. Lett. 110, 185 003.
Gao, L.et al. 2012 Magnetic field generation by the Rayleigh–Taylor instability in laser-driven planar plastic targets. Phys. Rev. Lett. 109, 115 001.
Haines, M. G. 1986 Magnetic-field generation in laser fusion and hot-electron transport. Can. J. Phys. 64 (8), 912919.
Igumenshchev, I. V., Marshall, F. J., Marozas, J. A., Smalyuk, V. A., Epstein, R., Goncharov, V. N., Collins, T. J. B., Sangster, T. C. and Skupsky, S. 2009 The effects of target mounts in direct-drive implosions on OMEGA. Phys. Plasmas 16 (8), 082 701.
Keller, D., Collins, T. J. B., Delettrez, J. A., McKenty, P. W., Radha, P. B., Whitney, B. and Moses, G. A. 1999 DRACO – A new multidimensional hydrocode. Bull. Am. Phys. Soc. 44, 37.
Knauer, J. P.et al. 2000 Single-mode, Rayleigh–Taylor growth-rate measurements on the OMEGA Laser System. Phys. Plasmas 7 (1), 338345.
Kugland, N. L., Ryutov, D. D., Plechaty, C., Ross, J. S. and Park, H.-S. 2012 Invited article: Relation between electric and magnetic field structures and their proton-beam images. Rev. Sci. Instrum. 83, 101 301.
Kulsrud, R. M. and Zweibel, E. G. 2008 On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71 (4), 046 901.
Lindl, J. 1995 Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2 (11), 39334024.
Manuel, M. J.-E.et al. 2012 First measurements of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas. Phys. Rev. Lett. 108, 255 006.
LLE 1987 LLE Quarterly report. LLE Rev. 33, 110.
Mima, K., Tajima, T. and Leboeuf, J. N. 1978 Magnetic field generation by the Rayleigh–Taylor instability. Phys. Rev. Lett. 41, 17151719.
Nishiguchi, A., Yabe, T. and Haines, M. G. 1985 Nernst effect in laser-produced plasmas. Phys. Fluids 28 (12), 36833690.
Oron, D., Alon, U. and Shvarts, D. 1998 Scaling laws of the Rayleigh–Taylor ablation front mixing zone evolution in inertial confinement fusion. Phys. Plasmas 5 (5), 14671476.
Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U. and Shvarts, D. 2001 Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas 8 (6), 28832889.
Orszag, S. A. and Patterson, G. S. 1972 Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 7679.
Rayleigh, L. 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170.
Remington, B. A.et al. 1997 Supernova hydrodynamics experiments on the Nova laser. Phys. Plasmas 4 (5), 19942003.
Sadot, O., Smalyuk, V. A., Delettrez, J. A., Meyerhofer, D. D., Sangster, T. C., Betti, R., Goncharov, V. N. and Shvarts, D. 2005 Observation of self-similar behavior of the 3D, nonlinear Rayleigh–Taylor instability. Phys. Rev. Lett. 95, 265 001.
Schneider, M. B., Dimonte, G. and Remington, B. 1998 Large and small scale structure in Rayleigh–Taylor mixing. Phys. Rev. Lett. 80, 35073510.
Smalyuk, V. A., Sadot, O., Delettrez, J. A., Meyerhofer, D. D., Regan, S. P. and Sangster, T. C. 2005 Fourier-space nonlinear Rayleigh–Taylor growth measurements of 3D laser-imprinted modulations in planar targets. Phys. Rev. Lett. 95, 215 001.
Srinivasan, B., Dimonte, G. and Tang, X.-Z. 2012 Magnetic field generation in Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Rev. Lett. 108, 165 002.
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. A 201, 192.
Vincent, L. and Soille, P. 1991 Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583.
Waxer, L. J.et al. 2005 High-energy petawatt capability for the Omega Laser. Opt. Photon. News 16 (7), 3036.
Wilks, S. C.et al. 2001 Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8 (2), 542549.
Willingale, L.et al. 2009 Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. Phys. Rev. Lett. 102, 125 002.
Zylstra, A. B.et al. 2012 Using high-intensity laser-generated energetic protons to radiograph directly driven implosions. Rev. Sci. Instrum. 83 (1), 013 511.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed