Skip to main content Accessibility help
×
Home

Macroscopic electric fields driven by lower-hybrid turbulence and acceleration of thermal electrons in the foot of quasi-perpendicular shocks

  • A. A. Galeev (a1), M. A. Malkov (a1) and H. J. Völk (a1)

Abstract

A new mechanism is suggested that draws non-resonant thermal electrons into a higher-velocity range, where they can be effectively accelerated by waves. We argue that the acceleration of a small number of pre-existing resonant particles influences the dynamics of the bulk plasma and results in a macroscopic electric field. The solution for the spatial dependence of this electric field is obtained, and it appears to be a new type of electrostatic shock, which forms only in the presence of background turbulence. This field enriches the region of resonant particles with thermal electrons, which leads to a build-up of an excess of accelerated particles. The number of accelerated particles is calculated. This mechanism appears as a good candidate to explain electron acceleration in the foot of quasi-perpendicular shocks.

Copyright

References

Hide All
Breizman, B. N., Zakharov, V. E. & Musher, S. L. 1974 Soviet Phys. JETP 37, 658.
Feldman, W. C. 1985 Collisionless Shocks in the Heliosphere: Reviews of Current Research (ed. Stone, R. G. & Tsurutani, B. T.), pp. 195205. Geophysical Monograph 35, American Geophysical Union.
Feldman, W. C., Bame, S. J., Gary, S. P., Gosling, J. T., McComas, D., Thomsen, M. F., Paschmann, G., Sckopke, N., Hoppe, M. M. & Russel, C. T. 1982 Phys. Rev. Lett. 49, 199.
Galeev, A. A. 1984 Soviet Phys. JETP 86, 1655.
Galeev, A. A. 1985 Soviet Astron. Lett. 11, 181.
Goodrich, C. C. 1985 Collisionless Shocks in the Heliosphere: Reviews of Current Research (ed. Stone, R. G. & Tsurutani, B. T.) pp. 153168. Geophysical Monograph 35, American Geophysical Union.
Kadomtsev, B. B. & Pogutes, O. P. 1967 Soviet Phys. JETP 53, 2025.
Leroy, M. M., Winske, D., Goodrich, C. C, Wu, C. S. & Papadopoulos, K. 1982 J. Geophys. Res. 87, 5081.
Papadopoulos, K. 1981 Plasma Astrophysics, p. 145. ESA SP-161.
Sagdeev, R. Z. 1966 Reviews of Plasma Physis (ed. Leontovich, M. A.), p. 23. Consultants Bureau, New York.
Sckopke, N. G., Paschmann, G., Bame, S. J., Gosling, J. T. & Russel, C. T. 1983 J. Geophys. Res. 88, 6121.
Shapiro, V. D. & Shevchenko, V. I. 1968 Soviet Phys. JETP 54, 1187.
Thomsen, M. F., Barr, H. C., Gary, S. P., Feldman, W. C. & Cole, T. E. 1983 J. Geophys. Res. 88, 3035.
Tsytovich, V. N. 1967 Nonlinear Phenomena in Plasma. Nauka, Moscow (in Russian).
Vaisbero, O. L., Galeev, A. A., Zastenker, G. N., Klimov, S. I., Nozdrachev, M. N., Sagdeev, R. Z., Sokolov, A. Yu. & Shapiro, V. D. 1983 Soviet Phys. JETP 85, 716.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Macroscopic electric fields driven by lower-hybrid turbulence and acceleration of thermal electrons in the foot of quasi-perpendicular shocks

  • A. A. Galeev (a1), M. A. Malkov (a1) and H. J. Völk (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed