Skip to main content Accessibility help

Linear electrostatic waves in two-temperature electron–positron plasmas

  • I. J. LAZARUS (a1), R. BHARUTHRAM (a2), S. V. SINGH (a3) (a4), S. R. PILLAY (a4) and G. S. LAKHINA (a3)...


Linear electrostatic waves in a magnetized four-component, two-temperature electron–positron plasma are investigated, with the hot species having the Boltzmann density distribution and the dynamics of cooler species governed by fluid equations with finite temperatures. A linear dispersion relation for electrostatic waves is derived for the model and analyzed for different wave modes. Analysis of the dispersion relation for perpendicular wave propagation yields a cyclotron mode with contributions from both cooler and hot species, which in the absence of hot species goes over to the upper hybrid mode of cooler species. For parallel propagation, both electron-acoustic and electron plasma modes are obtained, whereas for a single-temperature electron–positron plasma, only electron plasma mode can exist. Dispersion characteristics of these modes at different propagation angles are studied numerically.



Hide All
Berezhiani, V. I. and Mahajan, S. M. 1995 Phys. Rev. E 52, 1968.
Bharuthram, R. 1992 Astrophys. Space Sci. 189, 213.
Bhattacharyya, R., Janaki, M. S. and Dasgupta, B. 2003 Phys. Letts. A 315, 120.
Esfandyari-Kalejahi, A., Kourakis, I. and Shukla, P. K. 2006 Phys. Plasmas 13, 122310.
Fonseca, R. A., Silva, L. O., Tonge, J. W., Mori, W. B. and Dawson, J. M. 2003 Phys. Plasmas 10, 1979.
Greaves, R. G., Tinkle, M. D. and Surko, C. M. 1994 Phys. Plasmas 1, 1439.
Greaves, R. G. and Surko, C. M. 1995 Phys. Rev. Lett. 75, 3846.
Hasegawa, A. 1975 Plasma Instabilities and Nonlinear Effects. Berlin, Germany: Springer-Verlage, 194 pp.
Iwamoto, N. 1993 Phys. Rev. E 47, 604.
Kourakis, I. and Saini, N. S. 2010 J. Plasma Phys. 76, 607.
Lakhina, G. S. and Verheest, F. 1997 Astrophys. Space Sci. 253, 97.
Lazarus, I. J., Bharuthram, R. and Hellberg, M. A. 2008 J. Plasma Physics 74, 519.
Liang, E. P., Wilks, S. C. and Tabak, M. 1998 Phys. Rev. Lett. 81, 4887.
Lontano, M., Bulanov, S. and Koga, J. 2001 Phys. Plasmas 8, 5113.
Luo, Q. 1998 Brazilian J. Phys. 28, 191.
Machabeli, G. Z., Osmanov, Z. N. and Mahajan, S. M. 2005 Phys. Plasmas 12, 062901.
Matsukiyo, S. and Hada, T. 2003 Phys. Rev. E 67, 046406.
Nishikawa, K. I., Hardee, P. E., Hededal, C. B. and Fishman, G. J. 2006 Ap. J. 642, 1267.
Pillay, R. and Bharuthram, R. 1992 Astrophys. Space Sci. 198, 85.
Saeed, R. and Mushtaq, A. 2009 Phys. Plasmas 16, 032307.
Shatashvili, N. L., Javakhishvili, J. I. and Kaya, H. 1997 Astrophys. Space Sci. 250, 109.
Shukla, N. and Shukla, P. K. 2007 Phys. Lett. A 367, 120.
Singh, S. V. and Lakhina, G. S., 2001 Planet. Space Sci. 49, 107.
Stewart, G. A. and Laing, E. W. 1992 J. Plasma Phys. 47, 295.
Sturrock, P. A. 1971 Ap. J. 162, 529.
Surko, C. M. and Murphy, T. J. 1990 Phys. Fluids B 2, 1372.
Surko, C. M., Leventhal, M. and Passner, A. 1989 Phys. Rev. Lett. 62, 901.
Tokar, R. L. and Gary, S. P. 1984 Geophys. Res. Lett. 11, 1180.
Tribeche, M., Aoutou, K., Younsi, S. and Amour, R. 2009 Phys. Plasmas 16, 072103.
Trivelpiece, A. W. 1972 Comments Plasma Phys. Control. Fusion 1, 57.
Verheest, F., Hellberg, M. A., Gray, G. J. and Mace, R. L. 1996 Astrophys. Space Sci. 239, 125.
Yu, M. Y., Shukla, P. K. and Rao, N. N. 1984 Astrophys. Space Sci. 107, 327.
Zank, G. P. and Greaves, R. G. 1995 Phys. Rev. E 51, 6079.
Zhao, J., Sakai, J. I. and Nishikawaa, K.-I. 1996 Phys. Plasmas 3, 844.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed