Skip to main content Accessibility help

Large amplitude ion-acoustic double layers in warm dusty plasma

  • S. L. Jain (a1), R. S. Tiwari (a2) and M. K. Mishra (a3)


Large amplitude ion-acoustic double layer (IADL) is studied using Sagdeev's pseudo-potential technique in collisionless unmagnetized plasma comprising hot and cold Maxwellian population of electrons, warm adiabatic ions, and dust grains. Variation of both Mach number (M) and amplitude |φ m | of large amplitude IADL with charge, concentration, and mass of heavily charged massive dust grains is investigated for both positive and negative dust in plasma. Our numerical analysis shows that system supports only rarefactive large amplitude IADL for the selected set of plasma parameters. Our investigations for both negative and positive dust grains reveal that ion temperature increases the mobility of ions, resulting in increase in the Mach number of IADL. The larger mobility of ions causes leakage of ions from localized region, resulting into decrease in the amplitude of IADL. Other parameters, e.g. temperature ratio of hot to cold electrons, charge, concentration, mass of heavily charged massive dust grains also play significant role in the properties and existence of double layers. Since it is well established that both positive and negative dust are found in space as well as laboratory plasma, and double layers have a tremendous role to play in astrophysics, we have included both positive and negative dust in our numerical analysis for the study of large amplitude IADL. Further data used for negative dust are close to experimentally observed data. Hence, it is anticipated that our parametric studies for heavily charged (both positive and negative) dust may be useful in understanding laboratory plasma experiments, identifying nonlinear structures in upper part of ionosphere and lower part of magnetosphere structures, and in theoretical research for the study of properties of nonlinear structures.


Corresponding author

Email address for correspondence:


Hide All
Alfven, H. 1958 Tellus 10, 104.
Alfven, H. and Carlqvist, P. 1987 Sol. Phys. 1, 220.
Alinejad, H., Mamun, A. A. 2010 Phys. Plasmas 17, 123704.
Barkan, A. and Merlino, R. L. 1995 Phys. Plasmas 2 (9), 32613265.
Bharuthram, R. and Shukla, P. K. 1986 Phys. Fluids 29, 10.
Bharuthram, R. and Shukla, P. K. 1992a Planet Space Sci. 40, 973.
Bharuthram, R. and Shukla, P. K. 1992b Planet Space Sci. 40, 647.
Bharuthram, R. and Shukla, P. K. 1992c Planet Space Sci. 40, 465.
Bouchule, A. 1999 Dusty Plasmas. New York, NY: Wiley.
Carlile, R. N., Geha, S., O'Hanlon, J. F. and Stewart, J. C. 1991 Electrostatic trapping of contamination particles in a process plasma environment. Appl. Phys. Lett. 59, 11671169.
Chow, V. W., Mendis, D. A. and Resenberg, M. 1993 J. Geophys. Res. 98, 19065.
Das, B., Ghosh, D. and Chatterjee, P. 2010 Proc. Indian Acad. Sci. 74 (6), 973981.
Fortov, V. E., Nefedov, A. P., Vaulina, O. S., Lipaev, A. M., Molotkov, V. I., Samaryan, A. A., Nikitskii, V. P., Ivanov, A. I., Savin, S. F., Kalmykov, A. V. et al. 1998 J. Exp. Theor. Phys. 87, 1087.
Geortz, C. K. 1989 Dusty plasmas in the solar system. Rev. Geophys. 27, 271292.
Havens, O., Melandso, F., Hoz, C. L., Aslaksen, T. K. and Hartquist, T. 1992 Charged dust in the Earth's mesopause; effects on radar backscatter. Phys. Scr. 45, 535.
Havnes, O., Troim, J., Blix, T., Mortensen, W., Naesheim, L. I., Thrane, E. and Tonnesen, T. 1996 J. Geophys. Res. 101, 10839, doi:10.1029/96JA00003.
Horanyi, H. 1996 Annu. Rev. Astron. Astrophys. 34, 383.
Horanyi, M. and Mendis, D. A. 1986 The dynamics of charged dust in the tail of comet Giacobini-Zinner. J. Geophys. Res. 91, 355361.
Horányi, M., Morfill, G. E. and Grün, E. 1993 Nature (London) 363, 144.
Ivlev, A. and Morfill, G. 2001 Phys. Rev. E 63, 026412.
Jain, S. L., Tiwari, R. S. and Sharma, S. R. 1990 Can. J. Phys. 68, 474.
Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Phys. Plasmas 3, 702.
Mandal, G., Roy, K. and Chatterjee, P. 2009 Indian J. Phys. 83 (3), 365.
Mendis, D. A. and Resenberg, M. 1994 Annu. Rev. Astron. Astrophys. 32, 419.
Mishra, M. K., Tiwari, R. S. and Jain, S. K. 2007 Phys. Rev. E 76, 036401.
Mrif, H. and Djebli, M. 2007 34th EPS Conference on Plasma Physics, Warsaw, 2–6 July. ECA 31F, P-2.101.
Nakamura, Y. and Sarma, A. 2001 Phys. Plasmas 8, 3921.
Raadu, M. A. 1989 Phys. Rep. 178, 25.
Rosenberg, M. and Mendis, D. A. 1995 IEEE Trans. Plasma Sci. 23, 177.
Rosenberg, M., Mendis, D. A. and Sheehan, D. P. 1999 IEEE Trans. Plasma Sci. 27, 239.
Sah, O. P. 2004 Eur. Phys. J. D 31, 91100.
Selwyn, G. S. 1993 Jpn. J. Appl. Phys. 32(part 1), 3068.
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: Institute of Physics.
Shukla, P. K., Mendis, D. A. and Desai, T. 1997 Advances in Dusty Plasmas. Singapore: World Scientific.
Smith, M. A., Goodrich, J., Rehman, H. W. and Mohideen, U. 2001 IEEE Trans. Plasma Sci. 29, 216.
Tagare, S. G. 2000 Phys. Plasmas 7 (3), 883.
Thomas, H., Morfill, G. E. and Dammel, V. 1994 Phys. Rev. Lett. 73, 652.
Verheest, F. 2000 Waves in Dusty Plasma. Dordrecht, Netherlamds: Kluwar.
Wang Zheng, X., Wang, X., Ren, Li-W., Liu, J.-Y. and Liu, Y. 2005 Phys. Plasmas 12, 082104.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

Large amplitude ion-acoustic double layers in warm dusty plasma

  • S. L. Jain (a1), R. S. Tiwari (a2) and M. K. Mishra (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.