Skip to main content Accessibility help
×
Home

Lagrangian and Dirac constraints for the ideal incompressible fluid and magnetohydrodynamics

  • P. J. Morrison (a1), T. Andreussi (a2) and F. Pegoraro (a3)

Abstract

The incompressibility constraint for fluid flow was imposed by Lagrange in the so-called Lagrangian variable description using his method of multipliers in the Lagrangian (variational) formulation. An alternative is the imposition of incompressibility in the Eulerian variable description by a generalization of Dirac’s constraint method using noncanonical Poisson brackets. Here it is shown how to impose the incompressibility constraint using Dirac’s method in terms of both the canonical Poisson brackets in the Lagrangian variable description and the noncanonical Poisson brackets in the Eulerian description, allowing for the advection of density. Both cases give the dynamics of infinite-dimensional geodesic flow on the group of volume preserving diffeomorphisms and explicit expressions for this dynamics in terms of the constraints and original variables is given. Because Lagrangian and Eulerian conservation laws are not identical, comparison of the various methods is made.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Lagrangian and Dirac constraints for the ideal incompressible fluid and magnetohydrodynamics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Lagrangian and Dirac constraints for the ideal incompressible fluid and magnetohydrodynamics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Lagrangian and Dirac constraints for the ideal incompressible fluid and magnetohydrodynamics
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: morrison@physics.utexas.edu

References

Hide All
Abdelhamid, H. M., Kawazura, Y. & Yoshida, Z. 2015 Hamiltonian formalism of extended magnetohydrodynamics. J. Phys. A 48 (23), 235502.
Andreussi, T., Morrison, P. J. & Pegoraro, F. 2010 MHD equilibrium variational principles with symmetry. Plasma Phys. Control. Fusion P52, 055001.
Andreussi, T., Morrison, P. J. & Pegoraro, F. 2012 Hamiltonian magnetohydrodynamics: symmetric formulation, Casimir invariants, and equilibrium variational principles. Phys. Plasmas 19, 052102.
Andreussi, T., Morrison, P. J. & Pegoraro, F. 2013 Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability – theory. Phys. Plasmas 20, 092104.
Andreussi, T., Morrison, P. J. & Pegoraro, F. 2015 Erratum: Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability – theory. Phys. Plasmas 22, 039903.
Andreussi, T., Morrison, P. J. & Pegoraro, F. 2016 Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability – examples with translation symmetry. Phys. Plasmas 23, 102112.
Arnold, V. I. 1966 Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications á l’hydrodynamique des fluides parfaits. Ann. l’Inst. Fourier XVI, 319361.
Arnold, V. I. 1978 Mathematical Methods of Classical Mechanics. Springer.
Arnold, V. I. & Khesin, B. A. 1998 Topological Methods in Hydrodynamics. Springer.
Arnold, V. I., Kozlov, V. V. & Neishtadt, A. I. 1980 Dynamical Systems III. Springer.
Bloch, A. M. 2002 Nonholonomic Mechanics and Control. Springer.
Chandre, C., de Guillebon, L., Back, A., Tassi, E. & Morrison, P. J. 2013 On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets. J. Phys. A 46, 125203.
Chandre, C., Morrison, P. J. & Tassi, E. 2012 On the Hamiltonian formulation of incompressible ideal fluids and magnetohydrodynamics via Dirac’s theory of constraints. Phys. Lett. A 376, 737743.
Chandre, C., Morrison, P. J. & Tassi, E. 2014 Hamiltonian formulation of the modified Hasegawa-Mima equation. Phys. Lett. A 378, 956959.
Charidakos, I. K., Lingam, M., Morrison, P. J., White, R. L. & Wurm, A. 2014 Action principles for extended MHD models. Phys. Plasmas 21, 092118.
Corben, H. C. & Stehle, P. 1960 Classical Mechanics, 2nd edn. Wiley.
D’Avignon, E., Morrison, P. J. & Pegoraro, F. 2015 Action principle for relativistic magnetohydrodynamics. Phys. Rev. D 91, 084050.
D’Avignon, E. C., Morrison, P. J. & Lingam, M. 2016 Derivation of the Hall and extended magnetohydrodynamics brackets. Phys. Plasmas 23, 062101.
Dermaret, J. & Moncrief, V. 1980 Hamiltonian formalism for perfect fluids in general relativity. Phys. Rev. D 21, 27852793.
Dirac, P. A. M. 1950 Generalized Hamiltonian dynamics. Can. J. Math. 2, 129148.
Evans, L. C. 2010 Partial Differential Equations. American Mathematical Society.
Evstatiev, E. G. & Shadwick, B. A. 2013 Variational formulation of particle algorithms for kinetic plasma simulations. J. Comput. Phys. 245, 376398.
Finn, J. M. & Antonsen, T. M. 1985 Magnetic helicity: What is it and what is it good for?. Comment. Plasma Phys. Control. Fusion 9, 111126.
Flierl, G. R. & Morrison, P. J. 2011 Hamiltonian–Dirac simulated annealing: application to the calculation of vortex states. Physica D 240, 212232.
Hanson, A., Regge, T. & Teitleboim, C. 1976 Constrained Hamiltonian Systems. Accademia Nazionale dei Lincei.
Izacard, O., Chandre, C., Tassi, E. & Ciraolo, G. 2011 Gyromap for a two-dimensional Hamiltonian fluid model derived from Braginskii’s closure for magnetized plasmas. Phys. Plasmas 18 (6), 062105.
Kaltsas, D. A., Throumoulopoulos, G. N. & Morrison, P. J. 2020 Energy-Casimir, dynamically accessible, and Lagrangian stability of extended magnetohydrodynamic equilibria. Phys. Plasmas 27, 012104.
Van Kampen, N. G. & Felderhoff, B. U. 1967 Theoretical Methods in Plasma Physics. North-Holland.
Kraus, M., Kormann, K., Morrison, P. J. & Sonnendrücker, E. 2017 GEMPIC: geometric electromagnetic particle-in-cell methods. J. Plasma Phys. 83, 905830401.
Lagrange, J. L. 1788 Mécanique Analytique. Ve Courcier.
Lingam, M., Miloshevich, G. & Morrison, P. J. 2016 Concomitant Hamiltonian and topological structures of extended magnetohydrodynamics. Phys. Lett. A 380, 24002406.
Lingam, M., Morrison, P. J. & Wurm, A.2020 A class of three-dimensional gyroviscous magnetohydrodynamic models. Preprint, arXiv:2002.11272.
Morrison, P. J. 1982 Poisson brackets for fluids and plasmas. AIP Conf. Proc. 88, 1346.
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467521.
Morrison, P. J. 2009 On Hamiltonian and action principle formulations of plasma dynamics. AIP Conf. Proc. 1188, 329344.
Morrison, P. J. 2017 Structure and structure-preserving algorithms for plasma physics. Phys. Plasmas 24, 055502.
Morrison, P. J. & Greene, J. M. 1980 Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett. 45, 790793.
Morrison, P. J., Lebovitz, N. R. & Biello, J. 2009 The Hamiltonian description of incompressible fluid ellipsoids. Ann. Phys. 324, 17471762.
Morrison, P. J., Lingam, M. & Acevedo, R. 2014 Hamiltonian and action formalisms for two-dimensional gyroviscous MHD. Phys. Plasmas 21, 082102.
Newcomb, W. A. 1962 Lagrangian and Hamiltonian methods in magnetohydrodynamics. Nuclear Fusion Supp. 2, 451463.
Nguyen, S. & Turski, L. A. 1999 Canonical description of incompressible fluid: Dirac brackets approach. Phys. A 272, 4855.
Nguyen, S. & Turski, L. A. 2001 Examples of the Dirac approach to dynamics of systems with constraints. Physica A 290, 431444.
Orszag, S. A., Israeli, M. & Deville, M. O. 1986 Boundary conditions for incompressible flows. J. Sci. Comp. 1, 75111.
Qin, H., Liu, J., Xiao, J., Zhang, R., He, Y., Wang, Y., Burby, J. W., Ellison, L. & Zhou, Y. 2016 Variational formulation of particle algorithms for kinetic plasma simulations. Nucl. Fusion 56, 014001.
Serrin, J. 1959 Mathematical principles of classical fluid mechanics. In Handbuch der Physik VIII pt. 1 (ed. Flügge, S.), pp. 125262. Springer.
Sommerfeld, A. 1964 Mechanics of Deformable Bodies. Academic Press.
Sudarshan, E. C. G. & Makunda, N. 1974 Classical Dynamics: A Modern Perspective. John Wiley & Sons.
Sundermeyer, K. 1982 Constrained Dynamics, Lecture Notes in Physics, vol. 169. Springer.
Tassi, E. 2014 Hamiltonian structure of a drift-kinetic model and hamiltonian closures for its two-moment fluid reductions. Eur. Phys. J. D 68, 196.
Tassi, E. 2019 Hamiltonian gyrofluid reductions of gyrokinetic equations. J. Phys. A 52, 465501.
Tassi, E., Chandre, D. & Morrison, P. J. 2009 Hamiltonian derivation of the Charney–Hasegawa–Mima equation. Phys. Plasmas 16, 082301.
Tassi, E., Morrison, P. J., Waelbroeck, F. L. & Grasso, D. 2008 Hamiltonian formulation and analysis of a collisioinless fluid reconnection model. Plasma Phys Control. Fusion 50, 085014.
Tur, A. V. & Yanovsky, V. V. 1993 Invariants in dissipationless hydrodynamic media. J. Fluid Mech. 248, 67106.
Van Kampen, N. G. & Felderhof, B. U. 1967 Theoretical Methods in Plasma Physics. North Holland.
Whittaker, E. T. 1917 A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 2nd edn. Cambridge University Press.
Xiao, J., Qin, H., Morrison, P. J., Liu, J., Yu, Z., Zhang, R. & He, Y. 2016 Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems. Phys. Plasmas 23, 112107.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Lagrangian and Dirac constraints for the ideal incompressible fluid and magnetohydrodynamics

  • P. J. Morrison (a1), T. Andreussi (a2) and F. Pegoraro (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.