Skip to main content Accessibility help
×
Home

Kinetic inhibition of magnetohydrodynamics shocks in the vicinity of a parallel magnetic field

  • Antoine Bret (a1) (a2) (a3), Asaf Pe’er (a4), Lorenzo Sironi (a5), Aleksander Sa̧dowski (a6) (a7) and Ramesh Narayan (a3)...

Abstract

According to magnetohydrodynamics (MHD), the encounter of two collisional magnetized plasmas at high velocity gives rise to shock waves. Investigations conducted so far have found that the same conclusion still holds in the case of collisionless plasmas. For the case of a flow-aligned field, MHD stipulates that the field and the fluid are disconnected, so that the shock produced is independent of the field. We present a violation of this MHD prediction when considering the encounter of two cold pair plasmas along a flow-aligned magnetic field. As the guiding magnetic field grows, isotropization is progressively suppressed, resulting in a strong influence of the field on the resulting structure. A micro-physics analysis allows us to understand the mechanisms at work. Particle-in-cell simulations also support our conclusions and show that the results are not restricted to a strictly parallel field.

Copyright

Corresponding author

Email address for correspondence: antoineclaude.bret@uclm.es

References

Hide All
Ahmed, H., Dieckmann, M. E., Romagnani, L., Doria, D., Sarri, G., Cerchez, M., Ianni, E., Kourakis, I., Giesecke, A. L., Notley, M. et al. 2013 Time-resolved characterization of the formation of a collisionless shock. Phys. Rev. Lett. 110, 205001.
Bale, S. D., Mozer, F. S. & Horbury, T. S. 2003 Density-transition scale at quasiperpendicular collisionless shocks. Phys. Rev. Lett. 91, 265004.
Bell, A. R. 2004 Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550558.
Blandford, R. & Eichler, D. 1987 Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1.
Bret, A. 2015a Collisional behaviors of astrophysical collisionless plasmas. J. Plasma Phys. 81, 455810202.
Bret, A. 2015b Particles trajectories in magnetic filaments. Phys. Plasmas 22, 072116.
Bret, A. 2016a Hierarchy of instabilities for two counter-streaming magnetized pair beams. Phys. Plasmas 23, 062122.
Bret, A. 2016b Particles trajectories in Weibel magnetic filaments with a flow-aligned magnetic field. J. Plasma Phys. 82, 905820403.
Bret, A., Gremillet, L. & Dieckmann, M. E. 2010 Multidimensional electron beam-plasma instabilities in the relativistic regime. Phys. Plasmas 17, 120501.
Bret, A., Stockem, A., Fiúza, F., Ruyer, C., Gremillet, L., Narayan, R. & Silva, L. O. 2013 Collisionless shock formation, spontaneous electromagnetic fluctuations, and streaming instabilities. Phys. Plasmas 20, 042102.
Bret, A., Stockem, A., Narayan, R. & Silva, L. O. 2014 Collisionless Weibel shocks: Full formation mechanism and timing. Phys. Plasmas 21 (7), 072301.
Buneman, O. 1993 Tristan: the 3-d electromagnetic particle code. In Computer Space Plasma Physics (ed. Matsumoto, H. & Omura, Y.), p. 67. Terra Scientific.
Caprioli, D. & Spitkovsky, A. 2014 Simulations of ion acceleration at non-relativistic shocks. i. Acceleration efficiency. Astrophys. J. 783, 91.
Davidson, R. C., Hammer, D. A., Haber, I. & Wagner, C. E. 1972 Nonlinear development of electromagnetic instabilities in anisotropic plasmas. Phys. Fluids 15, 317.
Deutsch, C., Bret, A., Firpo, M.-C. & Fromy, P. 2005 Interplay of collisions with quasilinear growth rates of relativistic electron-beam-driven instabilities in a superdense plasma. Phys. Rev. E 72, 026402.
Falcke, H. & Rezzolla, L. 2014 Fast radio bursts: the last sign of supramassive neutron stars. Astron. Astrophys. 562, A137.
Gerbig, D. & Schlickeiser, R. 2011 Jump conditions for relativistic magnetohydrodynamic shocks in a gyrotropic plasma. Astrophys. J. 733 (1), 32.
Gurnett, D. A. & Bhattacharjee, A. 2005 Introduction to Plasma Physics: With Space and Laboratory Applications. Cambridge University Press.
Hill, J. M., Key, M. H., Hatchett, S. P. & Freeman, R. R. 2005 Beam-Weibel filamentation instability in near-term and fast-ignition experiments. Phys. Plasmas 12, 082304.
Huntington, C. M., Fiúza, F., Ross, J. S., Zylstra, A. B., Drake, R. P., Froula, D. H., Gregori, G., Kugland, N. L., Kuranz, C. C., Levy, M. C. et al. 2015 Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. Nat. Phys. 11, 173.
Karimabadi, H., Krauss-Varban, D. & Omidi, N. 1995 Temperature anisotropy effects and the generation of anomalous slow shocks. Geophys. Res. Lett. 22 (20), 26892692.
Keppens, R. & Meliani, Z. 2008 Linear wave propagation in relativistic magnetohydrodynamics. Phys. Plasmas 15 (10), 102103.
Kirk, J. G. & Duffy, P. 1999 Particle acceleration and relativistic shocks. J. Phys. G: Nucl. Part. Phys. 25 (8), R163.
Kulsrud, R. M. 2005 Plasma Physics for Astrophysics. Princeton University Press.
Lobet, M., Ruyer, C., Debayle, A., d’Humières, E., Grech, M., Lemoine, M. & Gremillet, L. 2015 Ultrafast synchrotron-enhanced thermalization of laser-driven colliding pair plasmas. Phys. Rev. Lett. 115, 215003.
Lyubarsky, Y. 2014 A model for fast extragalactic radio bursts. Mon. Not. R. Astron. Soc. 442, L9L13.
Majorana, A. & Anile, A. M. 1987 Magnetoacoustic shock waves in a relativistic gas. Phys. Fluids 30, 30453049.
Marcowith, A., Bret, A., Bykov, A., Dieckman, M. E., Drury, L., Lembège, B., Lemoine, M., Morlino, G., Murphy, G., Pelletier, G. et al. 2016 The microphysics of collisionless shock waves. Rep. Prog. Phys. 79, 046901.
Martins, S. F., Fonseca, R. A., Silva, L. O. & Mori, W. B. 2009 Ion dynamics and acceleration in relativistic shocks. Astrophys. J. Lett. 695, L189L193.
Mészáros, P. & Rees, M. J.2014 Gamma-Ray Bursts, Preprint, arXiv:1401.3012.
Park, H.-S., Ross, J. S., Huntington, C. M., Fiuza, F., Ryutov, D., Casey, D., Drake, R. P., Fiksel, G., Froula, D., Gregori, G. et al. 2016 Laboratory astrophysical collisionless shock experiments on Omega and NIF. J. Phys.: Conf. Ser. 688 (1), 012084.
Pe’er, A. 2015 Physics of gamma-ray bursts prompt emission. Adv. Astron. 2015, 907321.
Petschek, H. E. 1958 Aerodynamic dissipation. Rev. Mod. Phys. 30, 966974.
Sagdeev, R. Z. & Kennel, C. F. 1991 Collisionless shock waves. Sci. Am. 264 (4), 106.
Sagdeev, R. Z. 1966 Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys. 4, 23.
Sa̧dowski, A., Narayan, R., McKinney, J. C. & Tchekhovskoy, A. 2014 Numerical simulations of super-critical black hole accretion flows in general relativity. Mon. Not. R. Astron. Soc. 439, 503520.
Schwartz, S. J., Henley, E., Mitchell, J. & Krasnoselskikh, V. 2011 Electron temperature gradient scale at collisionless shocks. Phys. Rev. Lett. 107, 215002.
Service, A. T. 1986 Fitting formulae for the equation of state of a perfect, semirelativistic Boltzmann gas. Astrophys. J. 307, 60.
Silva, L. O., Fonseca, R. A., Tonge, J. W., Mori, W. B. & Dawson, J. M. 2002 On the role of the purely transverse Weibel instability in fast ignitor scenarios. Phys. Plasmas 9, 2458.
Sironi, L., Keshet, U. & Lemoine, M. 2015 Relativistic shocks: particle acceleration and magnetization. Space Sci. Rev. 191, 519544.
Sironi, L. & Spitkovsky, A. 2009 Particle acceleration in relativistic magnetized collisionless pair shocks: dependence of shock acceleration on magnetic obliquity. Astrophys. J, 698, 15231549.
Sironi, L. & Spitkovsky, A. 2011 Particle acceleration in relativistic magnetized collisionless electron–ion shocks. Astrophys. J. 726, 75– $+$ .
Sironi, L., Spitkovsky, A. & Arons, J. 2013 The maximum energy of accelerated particles in relativistic collisionless shocks. Astrophys. J. 771, 54.
Spitkovsky, A. 2005 Simulations of relativistic collisionless shocks: shock structure and particle acceleration. In Astrophysical Sources of High Energy Particles and Radiation (ed. Bulik, T., Rudak, B. & Madejski, G.), American Institute of Physics Conference Series, vol. 801, pp. 345350. American Institute of Physics.
Spitkovsky, A. 2008a On the structure of relativistic collisionless shocks in electron–ion plasmas. Astrophys. J. Lett. 673, L39L42.
Spitkovsky, A. 2008b Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys. J. Lett. 682, L5L8.
Stockem, A., Fiuza, F., Bret, A., Fonseca, R. & Silva, L. O. 2014 Exploring the nature of collisionless shocks under laboratory conditions. Sci. Rep. 4, 3934.
Stockem, A., Fiúza, F., Fonseca, R. A. & Silva, L. O. 2012 The impact of kinetic effects on the properties of relativistic electron–positron shocks. Plasma Phys. Control. Fusion 54, 125004.
Stockem, A., Lerche, I. & Schlickeiser, R. 2006 On the physical realization of two-dimensional turbulence fields in magnetized interplanetary plasmas. Astrophys. J. 651 (1), 584.
Stockem Novo, A., Bret, A., Fonseca, R. A. & Silva, L. O. 2015 Shock formation in electron–ion plasmas: mechanism and timing. Astrophys. J. Lett. 803, L29.
Vogl, D. F., Biernat, H. K., Erkaev, N. V., Farrugia, C. J. & Mühlbachler, S. 2001 Jump conditions for pressure anisotropy and comparison with the earth’s bow shock. Nonlinear Process. Geophys. 8 (3), 167174.
Zel’dovich, I. A. B. & Raizer, Y. P. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Kinetic inhibition of magnetohydrodynamics shocks in the vicinity of a parallel magnetic field

  • Antoine Bret (a1) (a2) (a3), Asaf Pe’er (a4), Lorenzo Sironi (a5), Aleksander Sa̧dowski (a6) (a7) and Ramesh Narayan (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed