Skip to main content Accessibility help
×
Home

Kinetic infernal modes for Wendelstein 7-X-like $\unicode[STIX]{x1D704}$ -profiles

  • Alessandro Zocco (a1), Alexey Mishchenko (a1) and Axel Könies (a1)

Abstract

We show analytically that for $\unicode[STIX]{x1D704}$ -profiles similar to the one of the Wendelstein 7-X stellarator, where $\unicode[STIX]{x1D704}$ is the rotational transform of the equilibrium magnetic field, a highly conducting toroidal plasma is unstable to kinetically mediated pressure-driven long-wavelength reconnecting modes, of the infernal type. The modes are destabilized either by the electron temperature gradient or by a small amount of current, depending on how far from unity the average value of $\unicode[STIX]{x1D704}$ is, which is assumed to be slowly varying. We argue that, for W7-X, a broad mode with toroidal and poloidal mode numbers $(n,m)=(1,1)$ can be destabilized due to the strong geometric side-band coupling of the resonant kinetic electron response at locations where $\unicode[STIX]{x1D704}$ is rational for harmonics that belong to the mode family of the $(n,m)=(1,1)$ mode itself. In many regimes, the growth rate is insensitive to the plasma density, thus it is likely to persist in high performance W7-X discharges. For a peaked electron temperature, with a maximum of $T_{e}=5~\text{keV}$ , larger than the ion temperature, $T_{i}=2.5~\text{keV}$ , and a density $n_{0}=10^{19}~\text{m}^{-3}$ , instability is found in regimes which show plasma sawtooth activity, with growth rates of the order of tens of kiloHertz. Frequencies are either electron diamagnetic or of the ideal magnetohydrodynamic type, but sub-Alfvénic. The kinetic infernal mode is thus a good candidate for the explanation of sawtooth oscillations in present-day stellarators and poses a new challenge to the problem of stellarator reactor optimization.

Copyright

Corresponding author

Email address for correspondence: Alessandro.zocco@ipp.mpg.de

References

Hide All
Antonsen, T. M. & Coppi, B. 1981 Non-asymptotic theory of collisionless reconnecting modes. Phys. Lett. A 81 (6), 335338.
Ara, G., Basu, B., Coppi, B., Laval, G., Rosenbluth, M. N. & Waddell, B. V. 1978 Magnetic reconnection and $m=1$ oscillations in current carrying plasmas. Ann. Phys. 112 (2), 443476.
Brunetti, D., Graves, J. P., Cooper, W. A. & Wahlberg, C. 2014 Fast growing resistive two fluid instabilities in hybrid-like tokamak configuration. Plasma Phys. Control. Fusion 56 (7), 075025.
Brunetti, D., Graves, J. P., Halpern, F. D., Luciani, J.-F., Lütjens, H. & Cooper, W. A. 2015 Extended MHD simulations of infernal mode dynamics and coupling to tearing modes. Plasma Phys. Control. Fusion 57 (5), 054002.
Charlton, L. A., Hastie, R. J. & Hender, T. C. 1989 Resistive infernal modes. Phys. Fluids B: Plasma Phys. 1 (4), 798803.
Connor, J. W., Ham, C. J., Hastie, R. J. & Zocco, A. 2019 Ion Landau damping and drift tearing modes. J. Plasma Phys. 85 (2), 905850204.
Connor, J. W., Hastie, R. J. & Zocco, A. 2012 Unified theory of the semi-collisional tearing mode and internal kink mode in a hot tokamak: implications for sawtooth modelling. Plasma Phys. Control. Fusion 54 (3), 035003.
Coppi, B., Mark, J. W. K., Sugiyama, L. & Bertin, G. 1979 Reconnecting modes in collisonless plasmas. Phys. Rev. Lett. 42, 10581061.
Dinklage, A., Beidler, C. D.& the Wendelstein 7-X team 2018 Magnetic configuration effects on the Wendelstein 7-X stellarator. Nat. Phys. 14, 855860.
Drake, J. F. 1978 Kinetic theory of $m=1$ internal instabilities. Phys. Fluids 21 (10), 17771789.
Glasser, A. H., Greene, J. M. & Johnson, J. L. 1975 Resistive instabilities in general toroidal plasma configurations. Phys. Fluids 18 (7), 875888.
Goedbloed, J. P. & Hagebeuk, H. J. L. 1972 Growth rates of instabilities of a diffuse linear pinch. Phys. Fluids 15 (6), 10901101.
Hastie, R. J. 1997 Sawtooth instability in tokamak plasmas. Astrophys. Space Sci. 256 (1), 177204.
Hastie, R. J. & Hender, T. C. 1988 Toroidal internal kink stability in tokamaks with ultra flat q profiles. Nucl. Fusion 28 (4), 585594.
Klinger, T., Alonso, A., Bozhenkov, S., Burhenn, R., Dinklage, A., Fuchert, G., Geiger, J., Grulke, O., Langenberg, A., Hirsch, M. et al. & The Wendelstein 7-X Team 2017 Performance and properties of the first plasmas of Wendelstein 7-X. Plasma Phys. Control. Fusion 59 (1), 014018.
Klinger, T., Baylard, C., Beidler, C. D., Boscary, J., Bosch, H. S., Dinklage, A., Hartmann, D., Helander, P., Maassberg, M., Peacock, A. et al. 2013 Towards assembly completion and preparation of experimental campaigns of wendelstein 7-x in the perspective of a path to a stellarator fusion power plant. Fusion Engng Des. 88 (6), 461465.
Newcomb, W. A. 1960 Hydromagnetic stability of a diffuse linear pinch. Ann. Phys. 10 (2), 232267.
Nührenberg, C. 1996 Global ideal magnetohydrodynamic stability analysis for the configurational space of Wendelstein 7-X. Phys. Plasmas 3 (6), 24012410.
Nührenberg, J. & Zille, R. 1987 Equilibrium and stability of low-shear stellarators. In Theory Fusion Plasmas, pp. 323. Compositori Bologna Editrice.
Pegoraro, F., Porcelli, F. & Schep, T. J. 1989 Internal kink modes in the ion-kinetic regime. Phys. Fluids B: Plasma Phys. 1 (2), 364374.
Porcelli, F. 1987 Viscous resistive magnetic reconnection. Phys. Fluids 30 (6), 17341742.
Porcelli, F., Boucher, D. & Rosenbluth, M. N. 1996 Model for the sawtooth period and amplitude. Plasma Phys. Control. Fusion 38 (12), 2163.
Rosenbluth, M. N., Dagazian, R. Y. & Rutherford, P. H. 1973 Nonlinear properties of the internal $m=1$ kink instability in the cylindrical tokamak. Phys. Fluids 16 (11), 18941902.
Waelbroeck, F. L. & Hazeltine, R. D. 1988 Stability of low-shear tokamaks. Phys. Fluids 31 (5), 12171223.
Zanini, M., Laqua, H. P., Stange, T., Brandt, C., Hirsch, M., Höfel, U., Marushchenko, N., Neuner, U., Rahbarnia, K., Schilling, J. et al. & W7-X Team 2019 ECCD operations in the second experimental campaign at W7-X. Eur. Phys. J. Web Conf. 203, 02013.
Zocco, A., Loureiro, N. F., Dickinson, D., Numata, R. & Roach, C. M. 2015 Kinetic microtearing modes and reconnecting modes in strongly magnetised slab plasmas. Plasma Phys. Control. Fusion 57 (6), 065008.
Zocco, A. & Schekochihin, A. A. 2011 Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas. Phys. Plasmas 18 (10), 102309.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Kinetic infernal modes for Wendelstein 7-X-like $\unicode[STIX]{x1D704}$ -profiles

  • Alessandro Zocco (a1), Alexey Mishchenko (a1) and Axel Könies (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed