Skip to main content Accessibility help
×
Home

Ion angular distribution simulation of the Highly Efficient Multistage Plasma Thruster

  • J. Duras (a1) (a2), D. Kahnfeld (a2), G. Bandelow (a2), S. Kemnitz (a3), K. Lüskow (a2), P. Matthias (a2), N. Koch (a1) and R. Schneider (a2)...

Abstract

Ion angular current and energy distributions are important parameters for ion thrusters, which are typically measured at a few tens of centimetres to a few metres distance from the thruster exit. However, fully kinetic particle-in-cell (PIC) simulations are not able to simulate such domain sizes due to high computational costs. Therefore, a parallelisation strategy of the code is presented to reduce computational time. The calculated ion beam angular distributions in the plume region are quite sensitive to boundary conditions of the potential, possible additional source contributions (e.g. from secondary electron emission at vessel walls) and charge exchange collisions. Within this work a model for secondary electrons emitted from the vessel wall is included. In order to account for limits of the model due to its limited domain size, a correction of the simulated angular ion energy distribution by the potential boundary is presented to represent the conditions at the location of the experimental measurement in $1~\text{m}$ distance. In addition, a post-processing procedure is suggested to include charge exchange collisions in the plume region not covered by the original PIC simulation domain for the simulation of ion angular distributions measured at $1~\text{m}$ distance.

Copyright

Corresponding author

Email address for correspondence: julia.duras@th-nuernberg.de

References

Hide All
Bohm, D., Burhop, E. H. S. & Massey, H. S. W. 1949 The Characteristics of Electrical Discharges in Magnetic Fields. McGraw-Hill.
Bronold, F. X., Matyash, K., Tskhakaya, D., Schneider, R. & Fehske, H. 2007 Radio-frequency discharges in oxygen: I. particle-based modelling. J. Phys. D: Appl. Phys. 40 (21), 65836592.
Duras, J., Matyash, K., Tskhakaya, D., Kalentev, O. & Schneider, R. 2014 Self-force in 1d electrostatic particle-in-cell codes for non-equidistant grids. Contrib. Plasma Phys. 54 (8), 697711.
Duras, J., Schneider, R., Kalentev, O., Kemnitz, K., Matyash, K., Koch, N., Lüskow, K., Kahnfeld, D. & Bandelow, G. 2016 Influence of electron sources in the near-field plume in a multistage plasma thruster. Plasma Physics and Technology 3 (3), 126130.
Hayashi, M.2003 Bibliography of electron and photon cross sections with atoms and molecules published in the 20th Century – Argon –. Res. Rep. NIFS-Data Series, NIFS-DATA-072.
Kahnfeld, D., Bandelow, G., Duras, J., Lüskow, K., Kemnitz, K. & Schneider, R. 2016 Solution of poisson’s equation in electrostatic particle-in-cell simulations. Acta Polytech; (submitted).
Kalentev, O., Matyash, K., Duras, J., Lüskow, K. L., Schneider, R., Koch, N. & Schirra, M. 2014 Electrostatic ion thrusters – towards predictive modeling. Contrib. Plasma Phys. 54, 235248.
Koch, N., Harmann, H.-P. & Kornfeld, G. 2007 Status of the THALES high efficiency multi stage plasma thruster development for HEMP-T 3050 and HEMP-T 30250. In Proceedings of the 30th International Electric Propulsion Conference, vol. IEPC-2007-110. Electric Rocket Propulsion Society.
Koch, N., Schirra, M., Weis, S., Lazurenko, A., van Reijen, B., Haderspeck, J., Genovese, A., Holtmann, H.-P., Schneider, R., Matyash, K. et al. 2011 The hempt concept – a survey on theoretical considerations and experimental evidences. In Proceedings of the 32nd International Electric Propulsion Conference, vol. IEPC-2011-236. Electric Rocket Propulsion Society.
Kornfeld, G., Koch, N. & Harmann, H.-P. 2007 Physics and evolution of HEMP-Thrusters. In Proceedings of the 30th International Electric Propulsion Conference, vol. IEPC-2007-108. Electric Rocket Propulsion Society.
Kornfeld, G., Seidel, H. & Wegener, J.1998 Plasma accelerator arrangement. Patent PCT/DE99/01708.
Li, X. S. 2005 An overview of superlu: Algorithms, implementation, and user in- terface. ACM Trans. Math. Softw. 31, 302325.
Matyash, K., Kalentev, O., Schneider, R., Taccogna, F., Koch, N. & Schirra, M. 2009 Kinetic Simulation of the stationary HEMP thruster including the near-filed plume region. In Proceedings of the 31st International Electric Propulsion Conference, vol. IEPC-2009-110. Electric Rocket Propulsion Society.
Matyash, K., Schneider, R., Mutzke, A., Kalentev, O., Taccogna, F., Koch, N. & Schirra, M. 2010 Kinetic simulations of SPT and HEMP thrusters including the near-field plume region. IEEE Trans. Plasma Sci. 38 (9, Part 1), 22742280.
Phelps, A. V.2000 Nitrogen atoms and molecules. Retreved from http://jila.colorado.edu/avp/collision_data/neutralneutral/atomatom.txt (January 2015).
Phelps, A. V.2002 Nitrogen atomic and molecular ions. Retreved from http://jila.colorado.edu/avp/collision_data/ionneutral/IONATOM.TXT (January 2015).
Procassini, R., Birdsall, C., Morese, E. & Cohen, B.1987 A relativistic monte carlo binary collision model for use in plasma particle simulation codes. Mem. No. UCB/ERL M87/24, University of California, Berkeley.
van Reijen, B., Weis, S., Lazurenko, A., Haderspeck, J., Genovese, A., Holtmann, P., Ruf, K. & Pttmann, N. 2013 High precision thrust vector determination through full hemispherical rpa measurements assisted by anguar mapping of energy charge state distribution. In Proceedings of the 33nd International Electric Propulsion Conference, vol. IEPC-2013-284. Electric Rocket Propulsion Society.
Reiter, D.2009 The EIRENE code user manual. Retreved from http://www.eirene.de (September 2016).
Rosenberg, D. & Wehner, G. K. 1962 Sputtering yields for low energy He+-, Kr+-, and Xe+-Ion Bombardment. J. Appl. Phys. 33 (5), 18421845.
Stoer, J. 2005a Numerische Mathematik, vol. 1. Springer.
Stoer, J. 2005b Numerische Mathematik, vol. 2. Springer.
Taccogna, F., Longo, S., Capitelli, M. & Schneider, R. 2005 Self-similarity in hall plasma discharges: Applications to particle models. Phys. Plasmas 12, 053502.
Takizuka, T. & Abe, H. 1977 A binary collision model for plasma simulation with a particle code. J. Comput. Phys. 25, 205219.
Tskhakaya, D., Matyash, K., Schneider, R. & Taccogna, F. 2007 The particle-in-cell method. Contrib. Plasma Phys. 47 (8–9), 563594.
Vahedi, V., Dipeso, G., Birdsall, C. K., Lieberman, M. A. & Rognlien, T. D. 1993 Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation. I. Analysis of numerical techniques. Plasma Sources Sci. Technol. 2 (4), 261.
Yamamura, Y., Matsunami, N. & Itoh, N. 1983 Theoretical studies on an empirical formular for spittering yiels at normal incidence. Radiation Effects 71, 6586.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Ion angular distribution simulation of the Highly Efficient Multistage Plasma Thruster

  • J. Duras (a1) (a2), D. Kahnfeld (a2), G. Bandelow (a2), S. Kemnitz (a3), K. Lüskow (a2), P. Matthias (a2), N. Koch (a1) and R. Schneider (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed