Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-09T11:54:06.376Z Has data issue: false hasContentIssue false

Ion and electron heating during magnetic reconnection in weakly collisional plasmas

Published online by Cambridge University Press:  28 November 2014

Ryusuke Numata*
Affiliation:
Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
N. F. Loureiro
Affiliation:
Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
*
Email address for correspondence: ryusuke.numata@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic reconnection and associated heating of ions and electrons in strongly magnetized, weakly collisional plasmas are studied by means of gyrokinetic simulations. It is shown that an appreciable amount of the released magnetic energy is dissipated to yield (irreversible) electron and ion heating via phase mixing. Electron heating is mostly localized to the magnetic island, not the current sheet, and occurs after the dynamical reconnection stage. Ion heating is comparable to electron heating only in high-β plasmas, and results from both parallel and perpendicular phase mixing due to finite Larmor radius (FLR) effects; in space, ion heating is mostly localized to the interior of a secondary island (plasmoid) that arises from the instability of the current sheet.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

References

REFERENCES

Abel, I. G., Barnes, M., Cowley, S. C., Dorland, W. and Schekochihin, A. A. 2008 Linearized model Fokker–Planck collision operators for gyrokinetic simulations I. Theory. Phys. Plasmas 15 (12), 122 509.Google Scholar
Barnes, M., Abel, I. G., Dorland, W., Ernst, D. R., Hammett, G. W., Ricci, P., Rogers, B. N., Schekochihin, A. A. and Tatsuno, T. 2009 Linearized model Fokker–Planck collision operators for gyrokinetic simulations II. Numerical implementation and tests. Phys. Plasmas 16 (7), 072 107.CrossRefGoogle Scholar
Dahlin, J. T., Drake, J. F. and Swisdak, M. 2014 The mechanisms of electron heating and acceleration during magnetic reconnection. Phys. Plasmas 21 (9), 092 304.Google Scholar
Dorland, W. and Hammett, G. W. 1993 Gyrofluid turbulence models with kinetic effects. Phys. Fluids B 5 (3), 812835.CrossRefGoogle Scholar
Drake, J. F., Swisdak, M., Che, H. and Shay, M. A. 2006 Electron acceleration from contracting magnetic islands during reconnection. Nature 443 (5), 553556.CrossRefGoogle ScholarPubMed
Fiksel, G., Almagri, A. F., Chapman, B. E., Mirnov, V. V., Ren, Y., Sarff, J. S. and Terry, P. W. 2009 Mass-dependent ion heating during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 103 (14), 145 002.Google Scholar
Fitzpatrick, R. 2010 Magnetic reconnection in weakly collisional highly magnetized electron-ion plasmas. Phys. Plasmas 17 (4), 042 101.Google Scholar
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. and Schekochihin, A. A. 2006 Astrophysical gyrokinetics: Basic equations and linear theory. Astrophys. J. 651 (1), 590614.Google Scholar
Hsu, S. C., Carter, T. A., Fiksel, G., Ji, H., Kulsrud, R. M. and Yamada, M. 2001 Experimental study of ion heating and acceleration during magnetic reconnection. Phys. Plasmas 8 (5), 19161928.Google Scholar
Landau, L. D. 1946 On the vibrations of the electronic plasma. Zh. Eksp. Teor. Fiz. 16 (7), 574586.Google Scholar
Loureiro, N. F., Schekochihin, A. A. and Cowley, S. C. 2007 Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14 (10), 100 703.CrossRefGoogle Scholar
Loureiro, N. F., Schekochihin, A. A. and Uzdensky, D. A. 2013a Plasmoid and Kelvin–Helmholtz instabilities in Sweet-Parker current sheets. Phys. Rev. E 87, 013 102.CrossRefGoogle ScholarPubMed
Loureiro, N. F., Schekochihin, A. A. and Zocco, A. 2013b Fast collisionless reconnection and electron heating in strongly magnetised plasmas. Phys. Rev. Lett. 111 (2), 025 002.Google Scholar
Numata, R., Dorland, W., Howes, G. G., Loureiro, N. F., Rogers, B. N. and Tatsuno, T. 2011 Gyrokinetic simulations of the tearing instability. Phys. Plasmas 18 (11), 112 106.Google Scholar
Numata, R., Howes, G. G., Tatsuno, T., Barnes, M. and Dorland, W. 2010 AstroGK: Astrophysical gryokinetics code. J. Comput. Phys. 229 (24), 93479372.Google Scholar
Numata, R. and Loureiro, N. F. 2014 Electron and ion heating during magnetic reconnection in weakly collisional plasmas. JPS Conf. Proc. 1, 015 044.Google Scholar
Ono, Y., Yamada, M., Akao, T., Tajima, T. and Matsumoto, R. 1996 Ion acceleration and direct ion heating in three-component magnetic reconnection. Phys. Rev. Lett. 76 (18), 33283331.Google Scholar
Porcelli, F. 1991 Collisionless m = 1 tearing mode. Phys. Rev. Lett. 66 (4), 425428.Google Scholar
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. and Tatsuno, T. 2009 Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser. 182 (1), 310377.Google Scholar
Spitzer, L. Jr. and Härm, R. 1953 Transport phenomena in a completely ionized gas. Phys. Rev. 89 (5), 977981.Google Scholar
Tatsuno, T., Dorland, W., Schekochihin, A. A., Plunk, G. G., Barnes, M., Cowley, S. C. and Howes, G. G. 2009 Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence. Phys. Rev. Lett. 103 (1), 015 003.Google Scholar
TenBarge, J. M., Daughton, W., Karimabadi, H., Howes, G. G. and Dorland, W. 2014 Collisionless reconnection in the large guide field regime: Gyrokinetic versus particle-in-cell simulations. Phys. Plasmas 21 (2), 020 708.Google Scholar
Yamada, M., Kulsrud, R. and Ji, H. 2010 Magnetic reconnection. Rev. Mod. Phys. 82 (1), 603664.CrossRefGoogle Scholar
Zocco, A. and Schekochihin, A. A. 2011 Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection and electron heating in low-beta plasmas. Phys. Plasmas 18 (10), 102 309.Google Scholar