Skip to main content Accessibility help
×
Home

Interplay between intermittency and dissipation in collisionless plasma turbulence

  • Alfred Mallet (a1), Kristopher G. Klein (a2) (a3), Benjamin D. G. Chandran (a4), Daniel Grošelj (a5), Ian W. Hoppock (a4), Trevor A. Bowen (a1) (a6), Chadi S. Salem (a1) and Stuart D. Bale (a1) (a6)...

Abstract

We study the damping of collisionless Alfvénic turbulence in a strongly magnetised plasma by two mechanisms: stochastic heating (whose efficiency depends on the local turbulence amplitude $\unicode[STIX]{x1D6FF}z_{\unicode[STIX]{x1D706}}$ ) and linear Landau damping (whose efficiency is independent of $\unicode[STIX]{x1D6FF}z_{\unicode[STIX]{x1D706}}$ ), describing in detail how they affect and are affected by intermittency. The overall efficiency of linear Landau damping is not affected by intermittency in critically balanced turbulence, while stochastic heating is much more efficient in the presence of intermittent turbulence. Moreover, stochastic heating leads to a drop in the scale-dependent kurtosis over a narrow range of scales around the ion gyroscale.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interplay between intermittency and dissipation in collisionless plasma turbulence
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interplay between intermittency and dissipation in collisionless plasma turbulence
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interplay between intermittency and dissipation in collisionless plasma turbulence
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: alfred.mallet@berkeley.edu

References

Hide All
Alexandrova, O., Carbone, V., Veltri, P. & Sorriso- Valvo, L. 2008 Small-scale energy cascade of the solar wind turbulence. Astrophys. J. 674, 11531157.
Bañón Navarro, A., Teaca, B., Told, D., Groselj, D., Crandall, P. & Jenko, F. 2016 Structure of plasma heating in gyrokinetic Alfvénic turbulence. Phys. Rev. Lett. 117, 245101.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Beck, R. 2007 Magnetism in the spiral galaxy NGC 6946: magnetic arms, depolarization rings, dynamo modes, and helical fields. Astron. Astrophys. 470, 539556.
Boldyrev, S. 2006 Spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 96, 115002.
Bourouaine, S. & Chandran, B. D. G. 2013 Observational test of stochastic heating in low- $\unicode[STIX]{x1D6FD}$ fast-solar-wind streams. Astrophys. J. 774, 96.
Bruno, R., Carbone, V., Chapman, S., Hnat, B., Noullez, A. & Sorriso-Valvo, L. 2007 Intermittent character of interplanetary magnetic field fluctuations. Phys. Plasmas 14 (3), 032901.
Burlaga, L. F. 1991 Intermittent turbulence in the solar wind. J. Geophys. Res. 96, 58475851.
Chandran, B. D. G. 2010 Alfvén-wave turbulence and perpendicular ion temperatures in coronal holes. Astrophys. J. 720, 548554.
Chandran, B. D. G., Dennis, T. J., Quataert, E. & Bale, S. D. 2011 Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence. Astrophys. J. 743, 197.
Chandran, B. D. G., Li, B., Rogers, B. N., Quataert, E. & Germaschewski, K. 2010 Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys. J. 720, 503515.
Chandran, B. D. G., Schekochihin, A. A. & Mallet, A. 2015 Intermittency and alignment in strong RMHD turbulence. Astrophys. J. 807, 39.
Chasapis, A., Retinò, A., Sahraoui, F., Vaivads, A., Khotyaintsev, Y. V., Sundkvist, D., Greco, A., Sorriso-Valvo, L. & Canu, P. 2015 Thin current sheets and associated electron heating in turbulent space plasma. Astrophys. J. Lett. 804, L1.
Chaston, C. C., Bonnell, J. W., Carlson, C. W., McFadden, J. P., Ergun, R. E., Strangeway, R. J. & Lund, E. J. 2004 Auroral ion acceleration in dispersive Alfvén waves. J. Geophys. Res. (Space Physics) 109, A04205.
Chen, C. H. K. 2016 Recent progress in astrophysical plasma turbulence from solar wind observations. J. Plasma Phys. 82, 535820602.
Chen, C. H. K., Klein, K. G. & Howes, G. G. 2019 Evidence for electron Landau damping in space plasma turbulence. Nat. Commun. 10, 740.
Chen, C. H. K., Sorriso-Valvo, L., Šafránková, J. & Němeček, Z. 2014 Intermittency of solar wind density fluctuations from ion to electron scales. Astrophys. J. Lett. 789, L8.
Chen, L., Lin, Z. & White, R. 2001 On resonant heating below the cyclotron frequency. Phys. Plasmas 8, 47134716.
Cho, J. & Lazarian, A. 2009 Simulations of electron magnetohydrodynamic turbulence. Astrophys. J. 701, 236252.
Cox, D. P. 2005 The three-phase interstellar medium revisited. Annu. Rev. Astron. Astrophys. 43, 337385.
Elsasser, W. M. 1950 The hydromagnetic equations. Phys. Rev. 79, 183183.
Ferrière, K. M. 2001 The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 10311066.
Fiksel, G., Almagri, A. F., Chapman, B. E., Mirnov, V. V., Ren, Y., Sarff, J. S. & Terry, P. W. 2009 Mass-dependent ion heating during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 103 (14), 145002.
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
Goldreich, P. & Sridhar, S. 1995 Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence. Astrophys. J. 438, 763.
Greco, A., Matthaeus, W. H., Servidio, S., Chuychai, P. & Dmitruk, P. 2009 Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence. Astrophys. J. Lett. 691, L111L114.
Greco, A., Servidio, S., Matthaeus, W. H. & Dmitruk, P. 2010 Intermittent structures and magnetic discontinuities on small scales in MHD simulations and solar wind. Planet. Space Sci. 58, 18951899.
Greco, A., Valentini, F., Servidio, S. & Matthaeus, W. H. 2012 Inhomogeneous kinetic effects related to intermittent magnetic discontinuities. Phys. Rev. E 86 (6), 066405.
Grošelj, D., Cerri, S. S., Bañón Navarro, A., Willmott, C., Told, D., Loureiro, N. F., Califano, F. & Jenko, F. 2017 Fully kinetic versus reduced-kinetic modeling of collisionless plasma turbulence. Astrophys. J. 847, 28.
Haverkorn, M., Brown, J. C., Gaensler, B. M. & McClure-Griffiths, N. M. 2008 The outer scale of turbulence in the magnetoionized galactic interstellar medium. Astrophys. J. 680, 362370.
Hoppock, I. W., Chandran, B. D. G., Klein, K. G., Mallet, A. & Verscharen, D. 2018 Stochastic proton heating by kinetic-Alfvén-wave turbulence in moderately high- $\unicode[STIX]{x1D6FD}$ plasmas. J. Plasma Phys. 84 (6), 905840615.
Horbury, T. S. & Balogh, A. 1997 Structure function measurements of the intermittent MHD turbulent cascade. Nonlinear Process. Geophys. 4, 185199.
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590614.
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2008 A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. (Space Physics) 113, A05103.
Howes, G. G., Klein, K. G. & TenBarge, J. M.2014 The quasilinear premise for the modeling of plasma turbulence. arXiv:1404.2913.
Howes, G. G., McCubbin, A. J. & Klein, K. G. 2018 Spatially localized particle energization by Landau damping in current sheets produced by strong Alfvén wave collisions. J. Plasma Phys. 84 (1), 905840105.
Howes, G. G., Tenbarge, J. M. & Dorland, W. 2011 A weakened cascade model for turbulence in astrophysical plasmas. Phys. Plasmas 18 (10), 102305.
Kadomtsev, B. & Pogutse, O. 1973 Nonlinear helical perturbations of a plasma in the tokamak. Sov. Phys. JETP 38, 283.
Karimabadi, H., Roytershteyn, V., Wan, M., Matthaeus, W. H., Daughton, W., Wu, P., Shay, M., Loring, B., Borovsky, J., Leonardis, E. et al. 2013 Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20 (1), 012303.
Klein, K. G., Alterman, B. L., Stevens, M. L., Vech, D. & Kasper, J. C. 2018 Majority of solar wind intervals support ion-driven instabilities. Phys. Rev. Lett. 120 (20), 205102.
Klein, K. G. & Howes, G. G. 2015 Predicted impacts of proton temperature anisotropy on solar wind turbulence. Phys. Plasmas 22, 032903.
Klein, K. G., Howes, G. G., TenBarge, J. M., Bale, S. D., Chen, C. H. K. & Salem, C. S. 2012 Using synthetic spacecraft data to interpret compressible fluctuations in solar wind turbulence. Astrophys. J. 755, 159.
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82.
Landau, L. D. 1946 On the vibrations of the electronic plasma. Zh. Eksp. Teor. Fiz. 10, 25.
Leonardis, E., Sorriso-Valvo, L., Valentini, F., Servidio, S., Carbone, F. & Veltri, P. 2016 Multifractal scaling and intermittency in hybrid Vlasov-Maxwell simulations of plasma turbulence. Phys. Plasmas 23 (2), 022307.
Lion, S., Alexandrova, O. & Zaslavsky, A. 2016 Coherent events and spectral shape at ion kinetic scales in the fast solar wind turbulence. Astrophys. J. 824, 47.
Loureiro, N. F., Schekochihin, A. A. & Zocco, A. 2013 Fast collisionless reconnection and electron heating in strongly magnetized Plasmas. Phys. Rev. Lett. 111, 025002.
Mallet, A. & Schekochihin, A. A. 2017 A statistical model of three-dimensional anisotropy and intermittency in strong alfvénic turbulence. Mon. Not. R. Astron. Soc. 466, 3918.
Mallet, A., Schekochihin, A. A. & Chandran, B. D. G. 2015 Refined critical balance in strong Alfvénic turbulence. Mon. Not. R. Astron. Soc. 449, L77.
Matthaeus, W. H. & Lamkin, S. L. 1986 Turbulent magnetic reconnection. Phys. Fluids 29, 2513.
Matthaeus, W. H., Oughton, S., Osman, K. T., Servidio, S., Wan, M., Gary, S. P., Shay, M. A., Valentini, F., Roytershteyn, V., Karimabadi, H. et al. 2014 Nonlinear and linear timescales near kinetic scales in solar wind turbulence. Astrophys. J. 790, 155.
Matthaeus, W. H., Parashar, T. N., Wan, M. & Wu, P. 2016 Turbulence and proton–electron heating in kinetic plasma. Astrophys. J. Lett. 827, L7.
McChesney, J. M., Stern, R. A. & Bellan, P. M. 1987 Observation of fast stochastic ion heating by drift waves. Phys. Rev. Lett. 59, 14361439.
Montgomery, D. 1982 Major disruptions, inverse cascades, and the Strauss equations. Physica Scr. Volume T 2, 8388.
Müller, W.-C. & Biskamp, D. 2000 Scaling properties of three-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 84, 475478.
Osman, K. T., Matthaeus, W. H., Gosling, J. T., Greco, A., Servidio, S., Hnat, B., Chapman, S. C. & Phan, T. D. 2014 Magnetic reconnection and intermittent turbulence in the solar wind. Phys. Rev. Lett. 112, 215002.
Osman, K. T., Matthaeus, W. H., Greco, A. & Servidio, S. 2011 Evidence for inhomogeneous heating in the solar wind. Astrophys. J. Lett. 727, L11.
Osman, K. T., Matthaeus, W. H., Hnat, B. & Chapman, S. C. 2012a Kinetic signatures and intermittent turbulence in the solar wind plasma. Phys. Rev. Lett. 108 (26), 261103.
Osman, K. T., Matthaeus, W. H., Wan, M. & Rappazzo, A. F. 2012b Intermittency and local heating in the solar wind. Phys. Rev. Lett. 108 (26), 261102.
Parashar, T., Shay, M., Cassak, P. & Matthaeus, W. 2009 Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma. Phys. Plasmas 16, 032310.
Parashar, T. N., Salem, C., Wicks, R. T., Karimabadi, H., Gary, S. P. & Matthaeus, W. H. 2015 Turbulent dissipation challenge: a community-driven effort. J. Plasma Phys. 81 (5), 905810513.
Perri, S., Carbone, V., Vecchio, A., Bruno, R., Korth, H., Zurbuchen, T. H. & Sorriso-Valvo, L. 2012 Phase-synchronization, energy cascade, and intermittency in solar-wind turbulence. Phys. Rev. Lett. 109 (24), 245004.
Perrone, D., Alexandrova, O., Mangeney, A., Maksimovic, M., Lacombe, C., Rakoto, V., Kasper, J. C. & Jovanovic, D. 2016 Compressive coherent structures at ion scales in the slow solar wind. Astrophys. J. 826, 196.
Pezzi, O., Valentini, F. & Veltri, P. 2016 Collisional relaxation of fine velocity structures in plasmas. Phys. Rev. Lett. 116 (14), 145001.
Salem, C., Mangeney, A., Bale, S. D. & Veltri, P. 2009 Solar wind magnetohydrodynamics turbulence: anomalous scaling and role of intermittency. Astrophys. J. 702, 537553.
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310.
Servidio, S., Chasapis, A., Matthaeus, W. H., Perrone, D., Valentini, F., Parashar, T. N., Veltri, P., Gershman, D., Russell, C. T., Giles, B. et al. 2017 Magnetospheric multiscale observation of plasma velocity-space cascade: hermite representation and theory. Phys. Rev. Lett. 119 (20), 205101.
Servidio, S., Dmitruk, P., Greco, A., Wan, M., Donato, S., Cassak, P. A., Shay, M. A., Carbone, V. & Matthaeus, W. H. 2011 Magnetic reconnection as an element of turbulence. Nonlinear Process. Geophys. 18, 675695.
Servidio, S., Matthaeus, W. H., Shay, M. A., Cassak, P. A. & Dmitruk, P. 2009 Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 102, 115003.
Shay, M. A., Haggerty, C. C., Matthaeus, W. H., Parashar, T. N., Wan, M. & Wu, P. 2018 Turbulent heating due to magnetic reconnection. Phys. Plasmas 25 (1), 012304.
Sorriso-Valvo, L., Carbone, V., Veltri, P., Consolini, G. & Bruno, R. 1999 Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys. Res. Lett. 26, 18011804.
Strauss, H. R. 1976 Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks. Phys. Fluids 19, 134.
Sundkvist, D., Retinò, A., Vaivads, A. & Bale, S. D. 2007 Dissipation in turbulent plasma due to reconnection in thin current sheets. Phys. Rev. Lett. 99, 025004.
TenBarge, J. M. & Howes, G. G. 2013 Current sheets and collisionless damping in kinetic plasma turbulence. Astrophys. J. Lett. 771, L27.
TenBarge, J. M., Howes, G. G. & Dorland, W. 2013 Collisionless damping at electron scales in solar wind turbulence. Astrophys. J. 774, 139.
Told, D., Jenko, F., TenBarge, J. M., Howes, G. G. & Hammett, G. W. 2015 Multiscale nature of the dissipation range in gyrokinetic simulations of Alfvénic turbulence. Phys. Rev. Lett. 115 (2), 025003.
Vech, D., Klein, K. G. & Kasper, J. C. 2017 Nature of stochastic ion heating in the solar wind: testing the dependence on plasma beta and turbulence amplitude. Astrophys. J. Lett. 850, L11.
Voitenko, Y. & Goossens, M. 2004 Excitation of kinetic Alfvén turbulence by MHD waves and energization of space plasmas. Nonlinear Process. Geophys. 11, 535543.
Wan, M., Matthaeus, W. H., Roytershteyn, V., Parashar, T. N., Wu, P. & Karimabadi, H. 2016 Intermittency, coherent structures and dissipation in plasma turbulence. Phys. Plasmas 23, 042307.
Wan, M., Osman, K. T., Matthaeus, W. H. & Oughton, S. 2012 Investigation of intermittency in magnetohydrodynamics and solar wind turbulence: scale-dependent kurtosis. Astrophys. J. 744, 171.
White, R., Chen, L. & Lin, Z. 2002 Resonant plasma heating below the cyclotron frequency. Phys. Plasmas 9, 18901897.
Wu, P., Perri, S., Osman, K., Wan, M., Matthaeus, W. H., Shay, M. A., Goldstein, M. L., Karimabadi, H. & Chapman, S. 2013 Intermittent heating in solar wind and kinetic simulations. Astrophys. J. Lett. 763, L30.
Zocco, A. & Schekochihin, A. A. 2011 Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas. Phys. Plasmas 18, 102309.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Interplay between intermittency and dissipation in collisionless plasma turbulence

  • Alfred Mallet (a1), Kristopher G. Klein (a2) (a3), Benjamin D. G. Chandran (a4), Daniel Grošelj (a5), Ian W. Hoppock (a4), Trevor A. Bowen (a1) (a6), Chadi S. Salem (a1) and Stuart D. Bale (a1) (a6)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed