Skip to main content Accessibility help
×
Home

In-situ diagnostics of hydrocarbon dusty plasmas using quantum cascade laser absorption spectroscopy and mass spectrometry

  • K. Ouaras (a1), L. Colina Delacqua (a1), G. Lombardi (a1), J. Röpcke (a2), M. Wartel (a1) (a3), X. Bonnin (a1), M. Redolfi (a1) and K. Hassouni (a1)...

Abstract

The formation of carbon nanoparticles in low pressure magnetized H2/CH4 and H2/C2H2 plasmas is investigated using infrared quantum cascade laser absorption, mass spectrometry, and electrostatic probe measurements. Results showed that dust formation is correlated to the presence of a significant amount of large positively charged hydrocarbon ions. Large negative ions or neutral hydrocarbon were not observed. These results, along with a qualitative comparison of diffusion and reaction characteristic, suggest that a positive ion may contribute to the growth of nanoparticles in hydrocarbon magnetized plasmas.

Copyright

Corresponding author

Email address for correspondence: lombardi@lspm.cnrs.fr

References

Hide All
Bapat, A.et al. 2007 A plasma process for the synthesis of cubic-shaped silicon nanocrystals for nanoelectronic devices. J. Phys. D Appl. Phys. 40, 2247.
Benedikt, J. 2010 Plasma-chemical reactions: low pressure acetylene plasmas. J. Phys. D Appl. Phys. 43, 043001.
Bouchoule, A. and Boufendi, L. 1994 Particulate formation and dusty plasma behaviour in argon-silane RF discharge. Plasma Sources Sci. Technol. 2, 204.
Chai, K. B.et al. 2009 Dust particle growth in RF silane plasmas using two-dimensional multi-pass laser light scattering. New J. Phys. 11, 103006.
Colina Delacqua, L. 2012 Modélisation/diagnostic de production de poussiéres dans un plasma H2 au contact d'une cible C/W. Contribution à l'étude des interactions plasma/surface dans les machines de fusion thermonucléaire. PhD thesis, Université Paris 13, France.
De Bleecker, K. 2006 Modelling of nano-particle coagulation and transport dynamics in dusty silane discharges. New J. Phys. 8, 178.
Deschenaux, Ch.et al. 1999 Investigations of CH4, C2H2 and C2H4 dusty RF plasmas by means of FTIR absorption spectroscopy and mass spectrometry. J. Phys. D Appl. Phys. 32, 1876.
Janev, R. K.et al. 2006 Determination of chemical composition and charge state distribution of chemical erosion hydrocarbon fluxes. Phys. Scr. T124, 96100.
Langmuir, I. 1961 The collected works of Irving Langmuir (ed. Suits, G.) Macmillan, New York.
Michau, A.et al. 2011 Modeling of dust formation in a DC discharge. J. Nucl. Mater. 415, S1077.
Pelletier, J. 1996 Distributed ECR Plasma Sources. In High Density Plasma Sources, pp. 380–425, edited by Oleg A. Popov in William Andrew Sciences applied Press. ISBN: 978-0-8155-1377-3
Pereira, J.et al. 2006 Characterization of a-CNx:H particles and coatings prepared in aCH4/N2 R.F plasma. Surf. Coat. Technol. 200, 64146419.
Pintassilgo, C. D.et al. 2010 Kinetic study of a N2–CH4 afterglow plasma for production of N-containing hydrocarbon species of Titan's atmosphere. Adv. Space Res. 46, 657671.
Rothman, L. S.et al. 2013 The HITRAN2012 molecular spectroscopic database (original research article). J. Quant. Spectrosc. Radiat. Transfer 130, 450.
Winter, J.et al. 2009 Dust formation in Ar/CH4 and Ar/C2H2 plasmas. Plasma Sources Sci. Technol. 18, 034010.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed