Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-21T22:39:31.293Z Has data issue: false hasContentIssue false

Influence of the ion wake-field on the eikonal cross section for the electron–dust collision in dusty plasmas

Published online by Cambridge University Press:  26 April 2012

YOUNG-DAE JUNG
Affiliation:
Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791, South Korea Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180-3590, USA (ydjung@hanyang.ac.kr)
WOO-PYO HONG
Affiliation:
Department of Electronics Engineering, Catholic University of Daegu, Hayang, Gyongsan, Gyungbuk 712-702, South Korea

Abstract

The ion wake-field effects on the elastic electron–dust collisions are investigated in complex dusty plasmas. The eikonal method is employed to investigate the behaviors of the scattering phase shift and scattering cross section due to the variation of the strength of the wake-field. It is shown that the eikonal phase shift decreases with an increase of the Mach number and increases with an increase of the impact parameter. It is also shown that the eikonal phase shift decreases with increasing Debye length. The eikonal cross section for the elastic electron–dust collision is found to be increased due to the influence of the wake-field. In addition, it is found that the wake-field effect on the eikonal cross section is almost independent of the Debye length.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bouchoule, A. 1999 Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing. Chichester: Wiley.Google Scholar
Kompaneets, R., Morfill, G. E. and Ivlev, A. V. 2009 Phys. Plasmas 16, 043 705.CrossRefGoogle Scholar
Kopaleishvili, T. 1995 Collision Theory. Singapore: World Scientific.CrossRefGoogle Scholar
Metawei, Z. 2000 Acta Phys. Polonica B 31, 713.Google Scholar
Ramazanov, T. S. and Dzhumagulova, K. N. 2002 Phys. Plasmas 9, 3758.CrossRefGoogle Scholar
Ramazanov, T. S., Dzhumagulova, K. N., Daniyarov, T. T., Omarbakiyeva, Yu. A., Kodanova, S. K. and Dosbolayev, M. K. 2010 J. Plasma Phys. 76, 57.CrossRefGoogle Scholar
Ramazanov, T. S., Kodanova, S. K., Daniyarov, T. T. and Moldabekov, Zh. A. 2011a Contrib. Plasma Phys. 51, 514.CrossRefGoogle Scholar
Ramazanov, T. S., Moldabekov, ZH. A., Dzhumagulova, K. N. and Muratov, M. M. 2011b Phys. Plasmas 18, 103705.CrossRefGoogle Scholar
Ramazanov, T. S. and Turekhanova, K. N. 2005 Phys. Plasmas 12, 102 502.Google Scholar
Shevelko, V. P. 1997 Atoms and Their Spectroscopic Properties. Berlin: Springer.CrossRefGoogle Scholar
Shevelko, V. P. and Tawara, H. 1998 Atomic Multielectron Processes. Berlin: Springer.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics Publishing.CrossRefGoogle Scholar
Shukla, P. K. and Spatschek, K.-H. 1973 Phys. Lett. A 44, 398.CrossRefGoogle Scholar
Stenflo, L., Yu, M. Y. and Shukla, P. K. 1973 Phys. Fluids 16, 450.CrossRefGoogle Scholar
Tegeback, R. and Stenflo, L. 1975 Plasma Phys. 17, 991.CrossRefGoogle Scholar
Yoon, J.-S., Jung, Y. H., Lho, T., Yoo, S.-J., Lee, B. J. and Lee, S.-H. 2005 New J. Phys. 7, 56.CrossRefGoogle Scholar