Skip to main content Accessibility help
×
Home

The HelCat basic plasma science device

  • M. Gilmore (a1), A. G. Lynn (a1), T. R. Desjardins (a1), Y. Zhang (a1), C. Watts (a1) (a2), S. C. Hsu (a3), S. Betts (a1), R. Kelly (a1) and E. Schamiloglu (a1)...

Abstract

The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber – an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B ⩾ 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.

Copyright

Corresponding author

Email address for correspondence: mgilmore@unm.edu

References

Hide All
Alfvén, H., Lindberg, L. and Mitlid, P. 1960 Experiments with plasma rings. J. Nucl. Energy C 1 (3), 116.
Bieber, T. Glad, X., de Poucques, L., Hugon, R., Vasseur, J.-L., Bougdira, J. 2013 Argon ion and neutral metastable levels destruction in a magnetically enhanced inductively coupled plasma reactor. Open Plasma Phys. J. 6, 32.
Brown, M. R. and Bellan, P. M. 1990 a Current drive by spheromak injection into a tokamak. Phys. Rev. Lett. 64 (18), 2144.
Brown, M. R. and Bellan, P. M. 1990 b Spheromak injection into a tokamak. Phys. Fluids B 2 (6), 1306.
Burin, M. J., Tynan, G. R., Antar, G. Y., Crocker, N. A. and Holland, C. 2005 On the transition to drift turbulence in a magnetized plasma column. Phys. Plasmas 12, 052 320.
Chen, F. F. 1965 Electric probes. In: Plasma Diagnostic Techniques, (ed. Huddleston, R. H. and Leonard, S. L.). New York: Academic Press.
Chen, F. F. 2006 Introduction to Plasma Physics and Controlled Fusion, 2nd edn., Vol. 1. New York: Springer.
Chen, F. F. and Arnush, D. 1997 Generalized theory of helicon waves. I. normal modes. Phys. Plasmas 4 (9), 3411.
Chiang, F. C., Pribyl, P., Gekelman, W., Lefebvre, B., Chen, Li-Jen and Judy, J. W. 2011 Microfabricated flexible electrodes for multiaxis sensing in the large plasma device at UCLA. IEEE Trans. Plasma Sci. 39 (6), 1507.
Desjardins, T. R. and Gilmore, M. 2014 Phys. Plasmas (submitted).
Desjardins, T. R., Gilmore, M., Reynolds-Barredo, J. M. and Fisher, D. 2014 Phys. Plasmas (submitted).
Fasoli, A., Labit, B., McGrath, M. et al. 2006 Electrostatic turbulence and transport in a simple magnetized plasma. Phys. Plasmas 13, 055 902.
FEMM 2014 FEMM Magnetics, http://www.femm.info/wiki/HomePage.
Fujita, H., Yaura, S., Harada, T. and Matsup, H. 1987 Observation of potential relaxation instability in a bounded discharge plasma. IEEE Trans. Plasma Sci. PS–15 (4), 445.
Geddess, C. G. R., Kornack, T. W. and Brown, M. R. 1998 Scaling studies of spheromak formation and equilibrium. Phys. Plasmas 5, 1027.
Gekelman, W., Pfister, H., Lucky, A., Bamber, J., Leneman, D. and Maggs, J. 1991 Design, construction, and properties of the large plasma research device – the LAPD at UCLA. Rev. Sci. Instrum. 62 (12), 2875.
Gyergyekt, T., CerEek, M., Stanojevic, M. and Jelids, N. 1994 An investigation of the electrode current oscillations caused by the potential relaxation instability in a weakly magnetized discharge plasma. J. Phys. D: Appl. Phys. 27, 2080.
Hershkowitz, N. 1989 How Langmuir probes work. In: Plasma Diagnostics: Discharge Parameters and Chemistry, (ed. Auciello, O. and Falmm, D. L.). New York: Academic Press.
Hsu, S. C. and Bellan, P. M. 2005 On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun. Phys. Plasmas 12 (3), 032 103.
Huba, J. D. 2009 (2009 revised) NRL Plasma Formulary, http://www.psfc.mit.edu/library1/catalog/online_pubs/NRL_FORMULARY_09.pdf.
Iizuka, S., Michelson, P., Ramussen, J. J. and Schrittwiser, R. 1982 Dynamics of a potential barrier formed on the tail of a moving double layer in a collisionless plasma. Phys. Rev. Lett. 48 (3), 145.
Jassby, D. L. 1972 Transverse velocity shear instabilities within a magnetically confined plasma. Phys. Fluids 15 (9), 1590.
Kaw, P. W. and Dawson, J. M. 1969 Laser-induced anomalous heating of a plasma. Phys. Fluids 12, 2586.
Kronberg, P. P., Dufton, Q. W., Li, H. and Colgate, S. A. 2001 Magnetic energy of the intergalactic medium from galactic black holes. Astrophys. J. 560, 178.
Leneman, D., Gekelman, W. and Maggs, J. 2006 The plasma source of the large plasma device at University of California, Los Angeles. Rev. Sci. Instrum. 77, 015 108.
Light, M. and Chen, F. F. 1995 Helicon wave excitation with helical antennas. Phys. Plasmas 2 (4), 1084.
Liu, W., Hsu, S. C. and Li, H. 2009 Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma. Nucl. Fusion 49, 095 008.
Liu, W., Hsu, S. C., Li, H., Li, S. and Lynn, A. G. 2008 a Ideal magnetohydrodynamic simulation of magnetic bubble expansion as a model for extragalactic radio lobes. Phys. Plasmas 15 (7), 072 905.
Liu, W., Li, H., Li, S. and Hsu, S. C. 2008 b Long-term evolution of magnetized bubbles in galaxy clusters. Astrophys. J. Lett. 684, L57L60.
Lynn, A. G., Gilmore, M., Watts, C., Herrea, J., Kelly, R., Will, S., Xie, S., Yan, L. and Zhang, Y. 2009 The helcat dual-source plasma device. Rev. Sci. Instrum. 80 (10), 103 501.
MacLatchy, C. S., Boucher, C., Poirier, D. A. and Gunn, J. 1992 Gundestrup: a Langmuir/Mach probe array for measuring flows in the scrape-off layer of TdeV. Rev. Sci. Instrum. 63 (8), 3923.
Mishin, E. and Pedersen, T. 2011 Ionizing wave via high-power HF acceleration. Geophys. Res. Lett. 38, L01 105.
Moreland, L. D., Schamiloglu, E., Lemke, R. W., Korovin, S. D., Rostov, V. V., Roitman, A. M., Hendricks, K. J. and Spencer, T. A 1994 Efficiency enhancement of high power vacuum bwos using nonuniform slow wave structures. IEEE Trans. Plasma Sci. 22, 554.
Nishida, Y., Kusaka, S. and Yugami, N. 1994 Excitation of wakefield and electron acceleration by short microwave pulse. Phys. Scr. T52, 65.
Okamoto, A., Hara, K., Nagaoka, K., Yoshimura, S., Vranješ, J., Kono, M. and Tanaka, M. Y. 2003 Experimental observation of a tripolar vortex in a plasma. Phys. Plasmas 10 (6), 2211.
Pedersen, T. et al. 2010 Creation of artificial ionospheric layers using high-power HF waves. Geophys. Res. Lett. 37, L02 106.
Pedersen, T. et al. 2011 Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic. Annu. Geophys. 29, 47.
Reynolds, E. W., Koepke, M. E., Carroll, J. J. and Shinohara, S. 2006 Inhomogeneity scale lengths in a magnetized, low-temperature, collisionless, q-machine plasma column containing perpendicular-velocity shear. Phys. Plasmas 13, 092 106.
Ricci, P. and Rogers, B. N. 2009 Three-dimensional fluid simulations of a simple magnetized toroidal plasma. Phys. Plasmas 16, 092 307.
Ritz, Ch. P. et al. 1988 Advanced plasma fluctuation analysis techniques and their impact on fusion research. Rev. Sci. Instrum. 59 (8), 1739.
Rogers, B. N. and Ricci, P. 2010 Low-frequency turbulence in a linear magnetized plasma. Phys. Rev. Lett. 104, 225 002.
Romero-Talamás, C. A., Bellan, P. M. and Hsu, S. C. 2004 Multielement magnetic probe using commercial chip inductors. Rev. Sci. Instrum. 75, 2664.
Scime, E. E., Carr, J., Galante, M., Magee, R. M. and Hardin, R. 2013 Ion heating and short wavelength fluctuations in a helicon plasma source. Phys. Plasmas 20, 032 103.
Su, N. N., Horton, W. and Morrison, P. J. 1992 Drift wave vortices in nonuniform plasmas with sheared magnetic fields. Phys. Fluids B 4 (5), 1238.
Sudit, I. D. and Chen, F. F. 1994 RF compensated probes for high-density discharges. Plasma Sources Sci. Technol. 3, 162.
Terry, P. W. 2000 Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72 (1), 109.
Tsui, H. Y. W. et al. 1992 A new scheme for Langmuir probe measurement of transport and electron temperature fluctuations. Rev. Sci. Instrum. 63 (10), 4608.
Ware, A. S., Terry, P. W., Carreras, B. A. and Diamond, P. H. 1998 Turbulent heat and particle flux response to electric field shear. Phys. Plasmas 5 (1), 173.
Watts, C. and Hanna, J. 2004 Alfven wave propagation in a partially ionized plasma. Phys. Plasmas 11 (4), 1358.
Yee, J. and Bellan, P. M. 2000 Taylor relaxation and λ decay of unbounded, freely expanding spheromaks. Phys. Plasmas 7, 3625.
Zhang, Y., Lynn, A. G., Hsu, S. C., Gilmore, M. and Watts, C. 2009 Design of a compact coaxial magnetized plasma gun for magnetic bubble expansion experiments. In: Proc. 17th IEEE Int. Pulsed Power Conf., Washington, DC, 28 June –2 July, 2009.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

The HelCat basic plasma science device

  • M. Gilmore (a1), A. G. Lynn (a1), T. R. Desjardins (a1), Y. Zhang (a1), C. Watts (a1) (a2), S. C. Hsu (a3), S. Betts (a1), R. Kelly (a1) and E. Schamiloglu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed