Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T23:18:28.882Z Has data issue: false hasContentIssue false

Hard X-ray emission from pulsar-wind nebulae

Published online by Cambridge University Press:  19 September 2016

Stephen P. Reynolds*
Affiliation:
Physics Department, North Carolina State University, Raleigh, NC 27695-8202, USA
*
Email address for correspondence: reynolds@ncsu.edu

Abstract

Pulsar-wind nebulae emit an extremely broad spectrum of continuum radiation, from low radio frequencies to TeV gamma rays. The part of the spectral energy distribution (SED) from radio through MeV gamma rays is due to synchrotron emission from a distribution of relativistic electrons (or pairs) which can be described by one or more power laws. This spectrum exhibits that particle energy distribution, responsible also for the higher-energy (GeV–TeV) part of the SED, due to inverse-Compton upscattering of one of three photon fields: the synchrotron spectrum, the cosmic microwave background, or ambient optical/infrared photons. However, in a few sources, primary hadrons may produce GeV–TeV gamma rays through the decay of neutral pions produced in inelastic cosmic-ray collisions with thermal gas. The higher-energy end of the particle spectrum, producing synchrotron photons above approximately 10 keV, holds clues to the particle acceleration process. However, its detailed study requires imaging spectroscopy in this energy range, not available until the NuSTAR mission beginning in 2012, which performs true imaging between 3 and 78 keV with ${\sim}1^{\prime }$ angular resolution. I review NuSTAR observations of the first three pulsar-wind nebulae (PWNe) to be examined in this way: the Crab Nebula, G21.5–0.9 and MSH 15–52. All three show spectral structure not previously known: spectral steepening in certain locations and overall source shrinkage with increasing photon energy. The Crab Nebula has different shrinkage rates along the torus and along the northwest counter-jet. The latter rate is similar to that for both the other sources (FWHM $\propto E^{m}$ with $m\sim -0.2$ ). I discuss implications of these results for models of particle transport in PWNe.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonian, F., Akhperjanian, A. G., Aye, K.-M., Bazer-Bachi, A. R., Beilicke, M., Benbow, W., Berge, D., Berghaus, P., Bernlöhr, K., Boisson, C. et al. 2005 Discovery of extended VHE gamma-ray emission from the asymmetric pulsar wind nebula in MSH 15-52 with HESS. Astron. Astrophys. 435, L17L20.Google Scholar
An, H., Madsen, K. K., Reynolds, S. P., Kaspi, V. M., Harrison, F. A., Boggs, S. E., Christensen, F. E., Craig, W. W., Fryer, C. L., Grefenstette, B. W. et al. 2014 High-energy X-ray imaging of the pulsar wind nebula MSH 15-52: constraints on particle acceleration and transport. Astrophys. J. 793, 90.Google Scholar
Bandiera, R. & Bocchino, F. 2004 The X-ray halo of G21.5–0.9. Adv. Space Res. 33, 398402.Google Scholar
Bietenholz, M. F., Kassim, N., Frail, D. A., Perley, R. A., Erickson, W. C. & Hajian, A. R. 1997 The radio spectral index of the Crab Nebula. Astrophys. J. 490, 291301.Google Scholar
Bietenholz, M. F., Matheson, H., Safi-Harb, S., Brogan, C. & Bartel, N. 2011 The deepest radio study of the pulsar wind nebula G21.5-0.9: still no evidence for the supernova shell. Mon. Not. R. Astron. Soc. 412, 12211228.Google Scholar
Bocchino, F. 2005 Detection of thermal X-ray emission in the halo of the plerionic supernova remnant G21.5–0.9. Adv. Space Res. 35, 10031006.Google Scholar
Bocchino, F. & Bykov, A. M. 2001 The plerion nebula in IC 443: the XMM-Newton view. Astron. Astrophys. 376, 248253.CrossRefGoogle Scholar
Bühler, R. & Blandford, R. 2014 The surprising Crab pulsar and its nebula: a review. Rep. Prog. Phys. 77 (6), 066901.Google Scholar
Camilo, F., Ransom, S. M., Gaensler, B. M., Slane, P. O., Lorimer, D. R., Reynolds, J., Manchester, R. N. & Murray, S. S. 2006 PSR J1833-1034: discovery of the Central Young Pulsar in the Supernova Remnant G21.5–0.9. Astrophys. J. 637, 456465.Google Scholar
Chevalier, R. A. 2005 Young core-collapse supernova remnants and their supernovae. Astrophys. J. 619, 839855.Google Scholar
de Jager, O. C. & Harding, A. K. 1992 The expected high-energy to ultra-high-energy gamma-ray spectrum of the Crab Nebula. Astrophys. J. 396, 161172.Google Scholar
de Jager, O. C., Harding, A. K., Michelson, P. F., Nel, H. I., Nolan, P. L., Sreekumar, P. & Thompson, D. J. 1996 Gamma-ray observations of the Crab Nebula: a study of the synchro-compton spectrum. Astrophys. J. 457, 253266.Google Scholar
de Rosa, A., Ubertini, P., Campana, R., Bazzano, A., Dean, A. J. & Bassani, L. 2009 Hard X-ray observations of PSR J1833-1034 and its associated pulsar wind nebula. Mon. Not. R. Astron. Soc. 393, 527530.CrossRefGoogle Scholar
Djannati-Ataï, A., deJager, O. C., Terrier, R., Gallant, Y. A. & Hoppe, S. 2008 New companions for the lonely crab? VHE emission from young pulsar wind nebulae revealed by H.E.S.S. Intl Cosmic Ray Conf. 2, 823826.Google Scholar
Gaensler, B. M., Arons, J., Kaspi, V. M., Pivovaroff, M. J., Kawai, N. & Tamura, K. 2002 Chandra imaging of the X-ray nebula powered by pulsar B1509-58. Astrophys. J. 569, 878893.Google Scholar
Gaensler, B. M., Brazier, K. T. S., Manchester, R. N., Johnston, S. & Green, A. J. 1999 SNR G320.4-01.2 and PSR B1509-58: new radio observations of a complex interacting system. Mon. Not. R. Astron. Soc. 305, 724736.Google Scholar
Gould, R. J. 1965 High-energy photons from the compton-synchrotron process in the Crab Nebula. Phys. Rev. Lett. 15, 577579.Google Scholar
Gratton, L. 1972 Source models with electron diffusion. Astrophys. Space Sci. 16, 81100.Google Scholar
Gupta, Y., Mitra, D., Green, D. A. & Acharyya, A. 2005 The discovery of PSR J1833-1034: the pulsar associated with the supernova remnant G21.5–0.9. Curr. Sci. 89, 853856.Google Scholar
Harrison, F. A., Craig, W. W., Christensen, F. E., Hailey, C. J., Zhang, W. W., Boggs, S. E., Stern, D., Cook, W. R., Forster, K., Giommi, P. et al. 2013 The Nuclear Spectroscopic Telescope Array (NuSTAR) high-energy X-ray mission. Astrophys. J. 770, 103.Google Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F. & Collins, R. A. 1968 Observation of a rapidly pulsating radio source. Nature 217, 709713.Google Scholar
Kardashev, N. S. 1962 Nonstationarity of spectra of young sources of nonthermal radio emission. Sov. Astron. 6, 317327.Google Scholar
Kennel, C. F. & Coroniti, F. V. 1984a Confinement of the Crab pulsar’s wind by its supernova remnant. Astrophys. J. 283, 694709.Google Scholar
Kennel, C. F. & Coroniti, F. V. 1984b Magnetohydrodynamic model of Crab Nebula radiation. Astrophys. J. 283, 710730.Google Scholar
Kestenbaum, H. L., Ku, W., Novick, R. & Wolff, R. S. 1975 Measurement of the spatial structure of the X-ray source in the Crab Nebula. II. Observation of the 1974 December 28 Lunar occultation. Astrophys. J. Lett. 202, L21L24.Google Scholar
Kirsch, M. G. F., Schönherr, G., Kendziorra, E., Freyberg, M. J., Martin, M., Wilms, J., Mukerjee, K., Breitfellner, M. G., Smith, M. J. S. & Staubert, R. 2006 The XMM-newton view of the crab. Astron. Astrophys. 453, 173180.Google Scholar
Komissarov, S. S. & Lyubarsky, Y. E. 2004 Synchrotron nebulae created by anisotropic magnetized pulsar winds. Mon. Not. R. Astron. Soc. 349, 779792.Google Scholar
Koo, B.-C., McKee, C. F., Suh, K.-W., Moon, D.-S., Onaka, T., Burton, M. G., Hiramatsu, M., Bessell, M. S., Gaensler, B. M., Kim, H.-J. et al. 2011 IRAS 15099-5856: remarkable mid-infrared source with prominent crystalline silicate emission embedded in the supernova remnant MSH15-52 . Astrophys. J. 732, 6.Google Scholar
Ku, W., Kestenbaum, H. L., Novick, R. & Wolff, R. S. 1976 Energy dependence of the size of the X-ray source in the Crab Nebula. Astrophys. J. Lett. 204, L77L81.Google Scholar
Li, H., Chen, Y. & Zhang, L. 2010 Lepto-hadronic origin of $\unicode[STIX]{x1D6FE}$ -rays from the G54.1 $+$ 0.3 pulsar wind nebula. Mon. Not. R. Astron. Soc. 408, L80L84.Google Scholar
Lyutikov, M. 2003 Mass-loading of pulsar winds. Mon. Not. R. Astron. Soc. 339, 623632.Google Scholar
Madsen, K. K., Harrison, F. A., Markwardt, C. B., An, H., Grefenstette, B. W., Bachetti, M., Miyasaka, H., Kitaguchi, T., Bhalerao, V., Boggs, S. et al. 2015a Calibration of the NuSTAR high-energy focusing X-ray telescope. Astrophys. J. Suppl. 220, 8.Google Scholar
Madsen, K. K., Reynolds, S., Harrison, F., An, H., Boggs, S., Christensen, F. E., Craig, W. W., Fryer, C. L., Grefenstette, B. W., Hailey, C. J. et al. 2015b Broadband X-ray imaging and spectroscopy of the Crab Nebula and pulsar with NuSTAR. Astrophys. J. 801, 66.Google Scholar
Matheson, H. & Safi-Harb, S. 2005 The plerionic supernova remnant G21.5–0.9: in and out. Adv. Space Res. 35, 10991105.Google Scholar
Matheson, H. & Safi-Harb, S. 2010 The Plerionic Supernova Remnant G21.5–0.9 Powered by PSR J1833-1034: new spectroscopic and imaging results revealed with the Chandra X-ray observatory. Astrophys. J. 724, 572587.Google Scholar
Mori, K., Burrows, D. N., Hester, J. J., Pavlov, G. G., Shibata, S. & Tsunemi, H. 2004 Spatial variation of the X-ray spectrum of the Crab Nebula. Astrophys. J. 609, 186193.Google Scholar
Ng, C.-Y. & Romani, R. W. 2004 Fitting pulsar wind tori. Astrophys. J. 601, 479484.Google Scholar
Nynka, M., Hailey, C. J., Reynolds, S. P., An, H., Baganoff, F. K., Boggs, S. E., Christensen, F. E., Craig, W. W., Gotthelf, E. V., Grefenstette, B. W. et al. 2014 NuSTAR study of hard X-ray morphology and spectroscopy of PWN G21.5–0.9. Astrophys. J. 789, 72.Google Scholar
Reynolds, S. P. 2009 Synchrotron-loss spectral breaks in pulsar-wind nebulae and extragalactic jets. Astrophys. J. 703, 662670.Google Scholar
Safi-Harb, S., Harrus, I. M., Petre, R., Pavlov, G. G., Koptsevich, A. B. & Sanwal, D. 2001 X-Ray observations of the supernova remnant G21.5-0.9. Astrophys. J. 561, 308320.Google Scholar
Salter, C. J., Reynolds, S. P., Hogg, D. E., Payne, J. M. & Rhodes, P. J. 1989 84 gigahertz observations of five Crab-like supernova remnants. Astrophys. J. 338, 171177.Google Scholar
Seward, F. D. & Harnden, F. R. Jr. 1982 A new, fast X-ray pulsar in the supernova remnant MSH 15-52 . Astrophys. J. Lett. 256, L45L47.Google Scholar
Tang, X. & Chevalier, R. A. 2012 Particle transport in young pulsar wind nebulae. Astrophys. J. 752, 83.Google Scholar
Tsujimoto, M., Guainazzi, M., Plucinsky, P. P., Beardmore, A. P., Ishida, M., Natalucci, L., Posson-Brown, J. L. L., Read, A. M., Saxton, R. D. & Shaposhnikov, N. V. 2011 Cross-calibration of the X-ray instruments onboard the Chandra, INTEGRAL, RXTE, Suzaku, Swift, and XMM-Newton observatories using G21.5-0.9. Astron. Astrophys. 525, A25.Google Scholar
Weiler, K. W. & Panagia, N. 1978 Are crab-type supernova remnants (plerions) short-lived? Astron. Astrophys. 70, 419422.Google Scholar
Wilson-Hodge, C. A., Cherry, M. L., Case, G. L., Baumgartner, W. H., Beklen, E., Narayana Bhat, P., Briggs, M. S., Camero-Arranz, A., Chaplin, V., Connaughton, V. et al. 2011 When a standard candle flickers. Astrophys. J. Lett. 727, L40.Google Scholar
Zajczyk, A., Gallant, Y. A., Slane, P., Reynolds, S. P., Bandiera, R., Gouiffès, C., Le Floc’h, E., Comerón, F. & Koch Miramond, L. 2012 Infrared imaging and polarimetric observations of the pulsar wind nebula in SNR G21.5–0.9. Astron. Astrophys. 542, A12.Google Scholar