Skip to main content Accessibility help
×
Home

Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection

  • J. Dargent (a1) (a2) (a3), N. Aunai (a1), G. Belmont (a1), N. Dorville (a1), B. Lavraud (a2) (a3) and M. Hesse (a4)...

Abstract

Tangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for a tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic particle-in-cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations on their initial conditions. We show that, as the current sheet evolves from a symmetric to an asymmetric upstream plasma, the reconnection rate is impacted and the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet.

Copyright

Corresponding author

Email address for correspondence: jeremy.dargent@lpp.polytechnique.fr

References

Hide All
Alpers, W. 1971 On the equilibrium of an exact charge neutral magnetopause. Astrophys. Space Sci. 11, 471474.
Aunai, N., Belmont, G. & Smets, R. 2011 Energy budgets in collisionless magnetic reconnection: ion heating and bulk acceleration. Phys. Plasmas 18 (12), 122901.
Aunai, N., Belmont, G. & Smets, R. 2013 First demonstration of an asymmetric kinetic equilibrium for a thin current sheet. Phys. Plasmas 20 (11), 110702.
Belmont, G., Aunai, N. & Smets, R. 2012 Kinetic equilibrium for an asymmetric tangential layer. Phys. Plasmas 19 (2), 022108.
Cassak, P. A. & Shay, M. A. 2007 Scaling of asymmetric magnetic reconnection: general theory and collisional simulations. Phys. Plasmas 14 (10), 102114.
Cassak, P. A. & Shay, M. A. 2009 Structure of the dissipation region in fluid simulations of asymmetric magnetic reconnectiona. Phys. Plasmas 16 (5), 055704.
Channell, P. J. 1976 Exact Vlasov–Maxwell equilibria with sheared magnetic fields. Phys. Fluids 19 (10), 15411545.
Chou, Y.-C. & Hau, L.-N. 2012 A statistical study of magnetopause structures: tangential versus rotational discontinuities. J. Geophys. Res. 117, 8232.
Daughton, W., Scudder, J. & Karimabadi, H. 2006 Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas 13 (7), 072101.
De Keyser, J., Dunlop, M. W., Owen, C. J., Sonnerup, B. U. Ö., Haaland, S. E., Vaivads, A., Paschmann, G., Lundin, R. & Rezeau, L. 2005 Magnetopause and boundary layer. Space Sci. Rev. 118 (1–4), 231320.
Dorville, N., Belmont, G., Aunai, N., Dargent, J. & Rezeau, L. 2015 Asymmetric kinetic equilibria: generalization of the bas model for rotating magnetic profile and non-zero electric field. Phys. Plasmas 22 (9), 092904.
Dunlop, M. W. & Balogh, A. 2005 Magnetopause current as seen by cluster. Ann. Geophys. 23, 901907.
Fujimoto, K. & Sydora, R. D. 2008 Whistler waves associated with magnetic reconnection. Geophys. Res. Lett. 35, 19112.
Harris, E. G. 1962 On a plasma sheath separating regions of oppositely directed magnetic field. Il Nuovo Cimento 23 (1), 115121.
Hesse, M., Aunai, N., Sibeck, D. & Birn, J. 2014 On the electron diffusion region in planar, asymmetric, systems. Geophys. Res. Lett. 41, 86738680.
Hesse, M., Neukirch, T., Schindler, K., Kuznetsova, M. & Zenitani, S. 2011 The diffusion region in collisionless magnetic reconnection. Space Sci. Rev. 160, 323.
Hesse, M., Schindler, K., Birn, J. & Kuznetsova, M. 1999 The diffusion region in collisionless magnetic reconnection. Phys. Plasmas 6 (5), 17811795.
Lemaire, J. & Burlaga, L. F. 1976 Diamagnetic boundary layers – a kinetic theory. Astrophys. Space Sci. 45, 303325.
Malakit, K., Shay, M. A., Cassak, P. A. & Bard, C. 2010 Scaling of asymmetric magnetic reconnection: kinetic particle-in-cell simulations. J. Geophys. Res. 115, 10223.
Mottez, F. 2003 Exact nonlinear analytic Vlasov–Maxwell tangential equilibria with arbitrary density and temperature profiles. Phys. Plasmas 10 (6), 25012508.
Murphy, N. A., Sovinec, C. R. & Cassak, P. A. 2010 Magnetic reconnection with asymmetry in the outflow direction. J. Geophys. Res. 115, A09206.
Priest, E. & Forbes, T.(Eds) 2000 Magnetic Reconnection: MHD Theory and Applications. Cambridge University Press.
Pritchett, P. L. 2008 Collisionless magnetic reconnection in an asymmetric current sheet. J. Geophys. Res. 113, 6210.
Pritchett, P. L. & Mozer, F. S. 2009 The magnetic field reconnection site and dissipation region. Phys. Plasmas 16 (8), 080702.
Roth, M., de Keyser, J. & Kuznetsova, M. M. 1996 Vlasov theory of the equilibrium structure of tangential discontinuities in space plasmas. Space Sci. Rev. 76, 251317.
Shay, M. A., Drake, J. F. & Swisdak, M. 2007 Two-scale structure of the electron dissipation region during collisionless magnetic reconnection. Phys. Rev. Lett. 99 (15), 155002.
Swisdak, M., Rogers, B. N., Drake, J. F. & Shay, M. A. 2003 Diamagnetic suppression of component magnetic reconnection at the magnetopause. J. Geophys. Res. 108, 1218.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed