Skip to main content Accessibility help

Free-electron lasing in the wake field of an elliptical pill-box cavity

  • S. H. Kim (a1)


It is shown using the photon concept that free-electron lasing (or net stimulated bremsstrahlung) is unrelated to the electron phase with respect to the laser wave, while the net acceleration (or net two-photon absorption) in an RF acceleration cavity depends on the electron phase with respect to the RF wave. The gain formula for the free-electron laser using a magnetic wiggler (MFEL) derived using the recently developed quantum-augmented classical theory in which the electron phase is ignored is in excellent agreement with that obtained quantum-mechanically. It is found by means of this theory that if an electric wiggler is added to a MFEL, the synchronization between the transverse velocity and the laser wave, which is required for coherence of the laser light, is not affected, while the laser gain is enhanced owing to the increase in the amplitude of the energy modulation by the electric wiggler. As a configuration of this turbo-MFEL, a two-beam elliptical wake-field cavity is proposed. An electron beam injected in the antiparallel direction along the lasing-beam path in this cavity lases through transverse wiggling by the transverse wake field and energy modulation by the longitudinal wake produced by relativistic drivingbeam bunches. This laser (WFEL) becomes of greater advantage compared with the MFEL as the laser wavelength is made shorter. It is also shown that the amplification of the WFEL is much greater than that of the present MFEL if we can produce a wake field whose longitudinal component has field strength greater than 1 MV m–1.



Hide All
Bane, K. L. F, Wilson, P. B. & Weiland, T. 1983 AIP Conf. Proc. 127, 876.
Bohm, D. & Gross, E. P. 1949 a Phys. Rev. 75, 1851.
Bohm, D. & Gross, E. P. 1949 b Phys. Rev. 75, 1864.
Brau, C. 1990 Free-Electron Lasers. Academic.
Chen, F. F. 1974 Introduction to Plasma Physics, pp. 219222. Plenum.
Elias, L. R., Fairbank, M., Madey, J. M. J., Schwettmann, H. A. & Smith, T. I. 1976 Phys. Rev. Lett. 36, 717.
Figueroa, H., Gai, W., Konecney, R., Norem, J., Ruggiero, A., Schoessow, P. & Simpson, J. 1988 Phys. Rev. Lett. 60, 2144.
Gai, W., Schoessow, P., Cole, B., Konecny, R., Norem, J., Rozenzweig, J. & Simpson, J. 1988 Phys. Rev. Lett. 61, 2756.
Hopf, F. A., Meystre, P. & Scully, M. O. 1976 Phys. Rev. Lett. 37, 1215.
Hopf, F. A., Kuper, T. G., Moore, G. T. & Scully, M. O. 1980 Free-Electron Generators of Coherent Radiation (ed. Jacobs, S. F., Pilloff, H. S., Sargent, M., Scully, M. O. & Spitzer, R.), vol. 7, p. 31. Addison-Wesley.
Kim, S. H. 1984 Phys. Fluids 27, 675.
Kim, S. H. 1986 J. Plasma Phys. 36, 195, [Corrigendum 41, 577 (1989)].
Kim, S. H. 1988 J. Plasma Phys. 39, 229.
Kim, S. H. 1990 Free-Electron and Applications (ed. Prosnitz, D.), SPIE Proc. 1227, p. 66. SPIE—The International Society for Optical Engineering.
Kim, S. H. 1991 a Nuovo Cim. 106B, 325.
Kim, S. H. 1991 b Intense Microwave and Particle Beams II (ed. Brandt, H. E.), SPIE vol. 1407, p. 620. SPIE-The International Society for Optical Engineering.
Kim, S. H. 1991 c Nuovo Cim. B (in press).
Kim, S. H. 1992 a J. Plasma Phys. 47, 197.
Kim, S. H. 1992 b J. Phys. Soc. Japan 61, 131.
Kim, S. H., Chen, K. W. & Yang, J. S. 1990 J. Appl. Phys. 68, 4942.
Kroll, N. M. & McMullin, W. A. 1978 Phys. Rev. A 17, 300.
Landau, L. D. 1946 J. Phys. USSR 10, 25.
Madey, J. M. J. 1971 J. Appl Phys. 42, 1906.
Nakajima, K., Enomoto, A., Kobayashi, H., Nakanishi, H., Nishida, Y., Ogata, A., Ohsawa, S., Oogoe, T., Shoji, T. & Urano, T. 1990 Nucl. Instr. Meth. A 292, 12.
Nishikawa, K. 1968 J. Phys. Soc. Japan 24, 916.
Orzechowski, T. J., Anderson, B. R., Clark, J. C., Fawley, W. M., Paul, A. C., Prosnitz, D., Scharlemann, E. T., Yarema, S. M., Hopkins, D. B., Sessler, A. M. & Wurtele, J. S. 1986 Phys. Rev. Lett. 57, 2172.
Roberson, C. W. & Sprangle, P. 1989 Phys. Fluids B 1, 4.
Rozenzweig, J. B., Cline, D. B., Cole, B., Figueroa, H., Gai, W., Konecny, R., Norem, J., Schoessow, P. & Simpson, J. 1989 Phys. Rev. Lett. 61, 98.
Smith, S. J. & Purcell, E. M. 1953 Phys. Rev. 92, 1069.
Verdeyen, J. T. 1981 Laser Electronics, p. 18. Prentice-Hall.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

Free-electron lasing in the wake field of an elliptical pill-box cavity

  • S. H. Kim (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.