Skip to main content Accessibility help
×
Home

Forward directed ion acceleration in a LWFA with ionization-induced injection

  • N. LEMOS (a1), J. L. MARTINS (a1), J. M. DIAS (a1), K. A. MARSH (a2), A. PAK (a3) and C. JOSHI (a2)...

Abstract

In this work we present an experimental study where energetic ions were produced in an underdense 2.5 × 1019 cm−3 plasma created by a 50 fs Ti:Sapphire laser with 5 TWs of power. The plasma comprises 95% He and 5% N2 gases. Ionization-induced trapping of nitrogen K-shell electrons in the laser-induced wakefield generates an electron beam with a mean energy of 40 MeV and ~1 nC of charge. Some of the helium ions at the wake–vacuum interface are accelerated with a measured minimum ion energy of He1+ ions of 1.2 MeV and He2+ ions of 4 MeV. The physics of the interaction is studied with 2D particle-in-cell simulations. These reveal the formation of an ion filament on the axis of the plasma due to space charge attraction of the wakefield-accelerated high-charge electron bunch. Some of these high-energy electrons escape the plasma to form a sheath at the plasma–vacuum boundary that accelerates some of the ions in the filament in the forward direction. Electrons with energy less than the sheath potential cannot escape and return to the plasma boundary in a vortex-like motion. This in turn produces a time-varying azimuthal magnetic field, which generates a longitudinal electric field at the interface that further accelerates and collimates the ions.

Copyright

References

Hide All
[1]Bulanov, S. V., Esirkepov, T.Zh, , Khoroshkov, V. S., Kuznetsov, A. V. and Pegoraro, F. 2002 Phys. Lett. A 299, 240.
[2]Esirkepov, T., Borghesi, M., Bulanov, S. V., Moutou, G. and Tajima, T. 2004 Phys. Rev. Lett. 92, 175003.
[3]Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A. and Snavely, R. A. 2001 Phys. Plasmas 8, 542.
[4]Fuchs, J. et al. 2006 Nature Phys. 2, 4854.
[5]Denavit, J., 1992 Phys. Rev. Lett. 69, 3052.
[6]Silva, L. O. et al. 2004 Phys. Rev. Lett. 92, 015002.
[7]Krushelnick, K. et al. 1999 Phys. Rev. Lett. 83 (4), 737740.
[8]Willingale, L. et al. 2006 Phys. Rev. Lett. 96 (24), 245002.
[9]Bulanov, S. V. and Esirkepov, T.Zh., , 2007 Phys. Rev. Lett. 98, 049503.
[10]Kolodner, P. et al. 1979 Phys. Rev. Lett. 43, 1402.
[11]Bulanov, S. V. et al. 2000 Phys. Rev. Lett. 71, 407.
[12]Bulanov, S. V. et al. 2005 Plasma Phys. Rep. 31 (5), 369381.
[13]Fukuda, Y. et al. 2009 Phys. Rev. Lett. 103 (16), 165002.
[14]Pak, A. et al. 2010 Phys. Rev. Lett. 104 (2), 025003.
[15]Clayton, C. E. et al. 2010 Phys. Rev. Lett. 105 (10), 105003.
[16]Fonseca, R. A. et al. 2002 Lect. Notes Comput. Sci. 2331, 342; Fonseca, R. A., Martins, S. F., Silva, L. O., Tonge, J. W., Tsung, F. and Mori, W. B. 2008 Plasma Phys. Control. Fusion 50, 124034.
[17]Ralph, J. E. et al. 2009 Phys. Rev. Lett. 102, 175003.
[18]Lu, W. et al. 2007 Phys. Rev. Spec. Top. – Accelerators and Beams 10, 061301.
[19]Kostyukov, E. et al. 2009 Phys. Rev. Lett. 103 (17), 175003.
[20]Popov, K. I. et al. 2010 Phys. Rev. Lett. 105 (19), 195002.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Forward directed ion acceleration in a LWFA with ionization-induced injection

  • N. LEMOS (a1), J. L. MARTINS (a1), J. M. DIAS (a1), K. A. MARSH (a2), A. PAK (a3) and C. JOSHI (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed