Skip to main content Accessibility help

Flows and dynamos in a model of stellar radiative zones

  • Radostin D. Simitev (a1) and Friedrich H. Busse (a2)


Stellar radiative zones are typically assumed to be motionless in standard models of stellar structure but there is sound theoretical and observational evidence that this cannot be the case. We investigate by direct numerical simulations a three-dimensional and time-dependent model of stellar radiation zones consisting of an electrically conductive and stably stratified anelastic fluid confined to a rotating spherical shell and driven by a baroclinic torque. As the baroclinic driving is gradually increased a sequence of transitions from an axisymmetric and equatorially symmetric time-independent flow to flows with a strong poloidal component and lesser symmetry are found. It is shown that all flow regimes characterised by significant non-axisymmetric components are capable of generating a self-sustained magnetic field. As the value of the Prandtl number is decreased and the value of the Ekman number is decreased, flows become strongly time dependent with progressively complex spatial structure and dynamos can be generated at lower values of the magnetic Prandtl number.


Corresponding author

Email address for correspondence:


Hide All
Aerts, C., Christensen-Dalsgaard, J. & Kurtz, D. 2010 Asteroseismology. Springer.
Braginsky, S. & Roberts, P. 1995 Equations governing convection in earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79 (1–4), 197.
Braithwaite, J. 2006 A differential rotation driven dynamo in a stably stratified star. Astron. Astrophys. 449, 451460.
Brandenburg, A. & Subramanian, K. 2005 Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417 (1-4), 1209.
Bullard, E. & Gellman, H. 1954 Homogeneous dynamos and terrestrial magnetism. Phil. Trans. R. Soc. A 247 (928), 213278.
Busse, F. H. 1982 On the problem of stellar rotation. Astrophys. J. 259, 759766.
Busse, F. H. 2003 The sequence-of-bifurcations approach towards understanding turbulent fluid flow. Surv. Geophys. 24 (3), 269288.
Busse, F. H., Grote, E. & Simitev, R. D. 2003 Convection in rotating spherical shells and its dynamo action. In Earth’s Core and Lower Mantle (ed. Jones, C., Soward, A. & Zhang, K.), pp. 130152. Taylor & Francis.
Busse, F. H. & Simitev, R. D. 2005a Convection in rotating spherical fluid shells and its dynamo states. In The Fluid Mechanics of Astrophysics and Geophysics. CRC Press.
Busse, F. H. & Simitev, R. D. 2005b Dynamos driven by convection in rotating spherical shells. Astron. Nachr. 326 (3–4), 231240.
Busse, F. H. & Simitev, R. D. 2011 Remarks on some typical assumptions in dynamo theory. Geophys. Astrophys. Fluid Dyn. 105, 234.
Chaplin, W. & Miglio, A. 2013 Asteroseismology of solar-type and red-giant stars. Annu. Rev. Astron. Astrophys. 51 (1), 353392.
Donati, J.-F. & Landstreet, J. 2009 Magnetic fields of nondegenerate stars. Annu. Rev. Astron. Astrophys. 47 (1), 333370.
Dudley, M. L. & James, R. W. 1989 Time-dependent kinematic dynamos with stationary flows. Proc. R. Soc. Lond. A 425 (1869), 407429.
Espinosa, L. & Rieutord, M. 2013 Self-consistent 2d models of fast-rotating early-type stars. Astron. Astrophys. 552, A35.
Fan, Y. & Fang, F. 2014 A simulation of convective dynamo in the solar convective envelope: maintenance of the solar-like differential rotation and emerging flux. Astrophys. J. 789 (1), 35.
Gastine, T., Yadav, R. K., Morin, J., Reiners, A. & Wicht, J. 2013 From solar-like to antisolar differential rotation in cool stars. Mon. Not. R. Astron. Soc. 438 (1), L76L80.
Gizon, L., Birch, A. & Spruit, H. 2010 Local helioseismology: three-dimensional imaging of the solar interior. Annu. Rev. Astron. Astrophys. 48 (1), 289338.
Gough, D. 1969 The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 448.
Grote, E., Busse, F. H. & Simitev, R. D. 2002 Buoyancy driven convection in rotating spherical shells and its dynamo action. In High Performance Computing in Science and Engineering’01, pp. 1234. Springer.
Gubbins, D. & Zhang, K. 1993 Symmetry properties of the dynamo equations for palaeomagnetism and geomagnetism. Phys. Earth Planet. Inter. 75 (4), 225241.
Hypolite, D. & Rieutord, M. 2014 Dynamics of the envelope of a rapidly rotating star or giant planet in gravitational contraction. Astron. Astrophys. 572, A15.
Jones, C. A., Boronski, P., Brun, A. S., Glatzmaier, G. A., Gastine, T., Miesch, M. S. & Wicht, J. 2011 Anelastic convection-driven dynamo benchmarks. Icarus 216 (1), 120135.
Kaiser, R. & Busse, F. H. 2017 On the robustness of the toroidal velocity theorem. Geophys. Astrophys. Fluid Dyn. 111 (5), 355368.
Käpylä, P. J., Käpylä, M. J. & Brandenburg, A. 2014 Confirmation of bistable stellar differential rotation profiles. Astron. Astrophys. 570, A43.
Käpylä, P. J., Käpylä, M. J., Olspert, N., Warnecke, J. & Brandenburg, A. 2017 Convection-driven spherical shell dynamos at varying Prandtl numbers. Astron. Astrophys. 599, A4.
Karak, B. B., Käpylä, P. J., Käpylä, M. J., Brandenburg, A., Olspert, N. & Pelt, J. 2015 Magnetically controlled stellar differential rotation near the transition from solar to anti-solar profiles. Astron. Astrophys. 576, A26.
Kerswell, R. R. 1993 Elliptical instabilities of stratified, hydromagnetic waves. Geophys. Astrophys. Fluid Dyn. 71 (1–4), 105143.
Lantz, S. & Fan, Y. 1999 Anelastic magnetohydrodynamic equations for modeling solar and stellar convection zones. Astrophys. J. Suppl. Ser. 121 (1), 247.
Latter, H. & Ivers, D. 2010 Spherical single-roll dynamos at large magnetic Reynolds numbers. Phys. Fluids 22 (6), 066601.
Le Bars, M. & Le Dizès, S. 2006 Thermo-elliptical instability in a rotating cylindrical shell. J. Fluid Mech. 563, 189.
Marti, P., Schaeffer, N., Hollerbach, R., Cébron, D., Nore, C., Luddens, F., Guermond, J.-L., Aubert, J., Takehiro, S., Sasaki, Y. et al. 2014 Full sphere hydrodynamic and dynamo benchmarks. Geophys. J. Int. 197 (1), 119134.
Mathis, S. 2013 Transport processes in stellar interiors. In Studying Stellar Rotation and Convection: Theoretical Background and Seismic Diagnostics (ed. Goupil, M., Belkacem, K., Neiner, C., Lignières, F. & Green, J. J.), pp. 2347. Springer.
Matsui, H., Heien, E., Aubert, J., Aurnou, J. M., Avery, M., Brown, B., Buffett, B. A., Busse, F. H., Christensen, U. R., Davies, C. J. et al. 2016 Performance benchmarks for a next generation numerical dynamo model. Geochem. Geophys. Geosyst. 17 (5), 15861607.
Miesch, M., Matthaeus, W., Brandenburg, A., Petrosyan, A., Pouquet, A., Cambon, C., Jenko, F., Uzdensky, D., Stone, J., Tobias, S. et al. 2015 Large-eddy simulations of magnetohydrodynamic turbulence in heliophysics and astrophysics. Space Sci. Rev. 194 (1), 97137.
Miesch, M. & Toomre, J. 2009 Turbulence, magnetism, and shear in stellar interiors. Annu. Rev. Fluid Mech. 41 (1), 317345.
Rieutord, M. 2006 The dynamics of the radiative envelope of rapidly rotating stars. Astron. Astrophys. 451 (3), 10251036.
Rieutord, M. & Beth, A. 2014 Dynamics of the radiative envelope of rapidly rotating stars: effects of spin-down driven by mass loss. Astron. Astrophys. 570, A42.
Rieutord, M. & Rincon, F. 2010 The Sun’s supergranulation. Living Rev. Solar Phys. 7:2.
van Saders, J. L. & Pinsonneault, M. H. 2013 Fast star, slow star; old star, young star: subgiant rotation as a population and stellar physics diagnostic. Astrophys. J. 776 (2), 67.
Schekochihin, A. A., Cowley, S. C., Maron, J. L. & McWilliams, J. C. 2004 Critical magnetic Prandtl number for small-scale dynamo. Phys. Rev. Lett. 9 (5), 054502.
Schekochihin, A. A., Haugen, N. E. L., Brandenburg, A., Cowley, S. C., Maron, J. L. & McWilliams, J. C. 2005 The onset of a small-scale turbulent dynamo at low magnetic Prandtl numbers. Astrophys. J. 625 (2), L115L118.
Schwarzschild, M. 1947 On stellar rotation. Astrophys. J. 106, 427.
Simitev, R. D. & Busse, F. H. 2003 Patterns of convection in rotating spherical shells. New J. Phys. 5, 97.
Simitev, R. D. & Busse, F. H. 2012 Bistable attractors in a model of convection-driven spherical dynamos. Phys. Scr. 86 (1), 018409.
Simitev, R. D. & Busse, F. H. 2017 Baroclinically-driven flows and dynamo action in rotating spherical fluid shells. Geophys. Astrophys. Fluid Dyn. 111 (5), 369379.
Simitev, R. D., Kosovichev, A. & Busse, F. H. 2015 Dynamo effects near the transition from solar to anti-solar differential rotation. Astrophys. J. 810 (1), 80.
Spruit, H. & Knobloch, E. 1984 Baroclinic instability in stars. Astron. Astrophys. 132, 8996.
Sun, Z., Schubert, G. & Glatzmaier, G. 1993 Transitions to chaotic thermal convection in a rapidly rotating spherical fluid shell. Geophys. Astrophys. Fluid Dyn. 69 (1), 95131.
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S. & Toomre, J. 2003 The internal rotation of the Sun. Annu. Rev. Astron. Astrophys. 41 (1), 599643.
Tilgner, A. 1999 Spectral methods for the simulation of incompressible flows in spherical shells. Intl J. Numer. Meth. Fluids 30 (6), 713724.
Turck-Chièze, S. & Talon, S. 2008 The dynamics of the solar radiative zone. Adv. Space Res. 41 (6), 855860.
Vidal, J., Cébron, D., Schaeffer, N. & Hollerbach, R. 2018 Magnetic fields driven by tidal mixing in radiative stars. Mon. Not. R. Astron. Soc. 475 (4), 45794594.
Willis, A. P. & Barenghi, C. F. 2002 A Taylor–Couette dynamo. Astron. Astrophys. 393 (1), 339343.
Zahn, J.-P. 1992 Circulation and turbulence in rotating stars. Astron. Astrophys. 265 (1), 115132.
von Zeipel, H. 1924 The radiative equilibrium of a rotating system of gaseous masses. Mon. Not. R. Astron. Soc. 84, 665683.
MathJax is a JavaScript display engine for mathematics. For more information see


Flows and dynamos in a model of stellar radiative zones

  • Radostin D. Simitev (a1) and Friedrich H. Busse (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed