Skip to main content Accessibility help
×
Home

Filamentation instability associated with dispersive Alfvén wave and solar coronal heating

  • B. K. DAS (a1), S. KUMAR (a1) and R. P. SHARMA (a1)

Abstract

This paper presents the nonlinear dynamics of the dispersive Alfvén wave (DAW) in the low-β plasmas (β≪me/mi; known as inertial Alfvén waves) applicable to solar corona. The pump DAW is perturbed by a low-frequency slow Alfvén wave (SW). When the ponderomotive nonlinearities are incorporated in the DAW and SW dynamics, the model equations of DAW and SW turn out to be the modified Zakharov system of equations (MZSE) Growth rate and threshold field for modulational (filamentation) instability have been calculated. The dependence of the growth rate on the perturbation wave number and the pump wave parameters such as k0xλe (inertial) has also been presented. It is obvious from this investigation that DAW can become unstable when it nonlinearly interacts with the SW and modulational instabilities can be triggered. The relevance of these investigations for solar corona has been discussed.

Copyright

References

Hide All
[1]Wu, D. J. and Yang, L. 2006 Astron. Astrophys. 452, L7L10.
[2]Shukla, A. and Sharma, R. P. 2001 Phys. Plasmas 8, 3759.
[3]Shukla, A., Sharma, R. P. and Malik, M. 2004 Phys. Plasmas 7, 2738.
[4]Voitenko, Y., Goossens, M., Sirenko, O. and Chian, A. C. L. 2003 Astron. Astrophys. 409, 331.
[5]Voitenko, Y. and Goossens, M. 2004 Nonl. Proc. Geophys. 11, 535.
[6]Shukla, P. K. and Stenflo, L. 2005 Phys. Plasmas 12, 084502.
[7]Shukla, P. K., Bingham, R., Eliasson, B., Dieckmann, M.E. and Stenflo, L., 2006 Plasma Phys. Control Fusion 48, B249B255.
[8]Shukla, P. K. and Stenflo, L. 2005 Astrophys. J. 629, L93L95.
[9]Champeaux, S., Passot, T. and Sulem, P. L. 1999 Alfven wave filamentation and plasma heating. In: Proc. Workshop on Nonlinear MHD Waves and Turbulence, Nice, France, 1 December–4 December 1998, (ed. Passot, T., Sulem, P. L.), New York: Springer-Verlag, pp. 5582.
[10]Laveder, D., Passot, T. and Sulem, P. L. 2001 Physica D 152–153, 694704.
[11]Kruer, W. L. 1988 The Physics of Laser Plasma Interactions. Reading, MA, USA: Addison-Wesley-Longman.
[12]Tsiklauri, D., Sakai, J. I. and Saito, S. 2005 Astron. Astrophys. 435, 1105.
[13]Passot, T. and Sulem, P. L. 2003 Phys. Plasmas 10, 3914.
[14]Goldreich, P. and Sridhar, 1995 Astrophys. J. 438.
[15]Shukla, P. K., Stenflo, L. and Bingham, R. 1999 Phys. Plasmas 6, 1677.
[16]Sharma, R. P., Singh, H. D. and Malik, M. 2006 J. Geophys. Res. 111, A12108.
[17]Singh, H. D. and Sharma, R. P. 2007 Phys. Plasmas 14, 102304.
[18]Malik, M., Sharma, R. P. and Singh, H. D. 2007 Sol. Phys. 241, 317.
[19]Sharma, R. P., Kumar, S. and Singh, H. D. 2009 Phys. Plasmas 16, 032901.
[20]Marklund, M., Shukla, P. K., Stenflo, L. and Lundin, J. 2006 Phys. Scr. 74, 373376.
[21]Kumar, S. and Sharma, R. P. 2010 Phys. Plasmas 17, 1.
[22]Bellan, P. M. and Stasiewicz, K. 1998 Phys. Rev. Lett. 80, 3523.
[23]Shukla, P. K. and Stenflo, L. 1999 Phys. Plasmas 6, 4120.
[24]Shukla, P. K. and Stenflo, L. 2000 Phys. Plasmas 7, 2738.
[25]Shukla, A. and Sharma, R. P. 2000 J. Geophys. Res. 107, 1338.
[26]Sharma, R. P., Kumar, S. and Singh, H. D. 2008 Phys. Plasmas 15, 082902.
[27]Singh, H. D. and Sharma, R. P. 2006 Phys. Plasmas 13, 012902.
[28]Shukla, A. and Sharma, R. P. 2002 J. Atmos. Sol. Terr. Phys. 64, 661.
[29]Shen, M. M. and Nicholson, D. R. 1987 Phys. Fluids 30, 1096.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Filamentation instability associated with dispersive Alfvén wave and solar coronal heating

  • B. K. DAS (a1), S. KUMAR (a1) and R. P. SHARMA (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed