Skip to main content Accessibility help
×
Home

Energetic electron transport in the presence of magnetic perturbations in magnetically confined plasmas

  • G. Papp (a1) (a2), M. Drevlak (a2), G. I. Pokol (a3) and T. Fülöp (a4)

Abstract

The transport of energetic electrons is sensitive to magnetic perturbations. By using three-dimensional numerical simulation of test particle drift orbits we show that the transport of untrapped electrons through an open region with magnetic perturbations cannot be described by a diffusive process. Based on our test particle simulations, we propose a model that leads to an exponential loss of particles.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Energetic electron transport in the presence of magnetic perturbations in magnetically confined plasmas
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Energetic electron transport in the presence of magnetic perturbations in magnetically confined plasmas
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Energetic electron transport in the presence of magnetic perturbations in magnetically confined plasmas
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: ppg@ipp.mpg.de

References

Hide All
Arnold, V. I. 1963 Small denominators II: proof of a theorem by A. N. Kolmogorov on the preservation of conditionally-periodic motion under small perturbation of the Hamiltonian. Russ. Math. Surv. 18 (5), 9.
Commaux, N., Baylor, L. R., Combs, S. K., Eidietis, N. W., Evans, T. E., Foust, C. R., Hollmann, E. M., Humphreys, D. A., Izzo, V. A., James, A. N., Jernigan, T. C., Meitner, S. J., Parks, P. B., Wesley, J. C. & Yu, J. H. 2011 Novel rapid shutdown strategies for runaway electron suppression in DIII-D. Nucl. Fusion 51 (10), 103001.
Evans, T. E., Moyer, R. A., Thomas, P. R., Watkins, J. G., Osborne, T. H., Boedo, J. A., Doyle, E. J., Fenstermacher, M. E., Finken, K. H., Groebner, R. J., Groth, M., Harris, J. H., La Haye, R. J., Lasnier, C. J., Masuzaki, S., Ohyabu, N., Pretty, D. G., Rhodes, T. L., Reimerdes, H., Rudakov, D. L., Schaffer, M. J., Wang, G. & Zeng, L. 2004 Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary. Phys. Rev. Lett. 92, 235003.
Fietz, S., Bergmann, A., Classen, I., Maraschek, M., Garcia-Munoz, M., Suttrop, W., Zohm, H. & the ASDEX Upgrade Team 2015 Influence of externally applied magnetic perturbations on neoclassical tearing modes at ASDEX Upgrade. Nucl. Fusion 55 (1), 013018.
Hollmann, E. M., Aleynikov, P. B., Fülöp, T., Humphreys, D. A., Izzo, V. A., Lehnen, M., Lukash, V. E., Papp, G., Pautasso, G., Saint-Laurent, F. & Snipes, J. A. 2015 Status of research toward the ITER disruption mitigation system. Phys. Plasmas 22 (2), 021802.
Kolmogorov, A. N. 1957 General theory of dynamical systems in classical mechanics. In Proceedings of the 1954 International Congress of Mathematics, vol. 1, pp. 315333. North Holland.
Koslowski, H. R., Liang, Y., Krämer-Flecken, A., Löwenbrück, K., von Hellermann, M., Westerhof, E., Wolf, R. C., Zimmermann, O. & the TEXTOR team 2006 Dependence of the threshold for perturbation field generated $m/n=2/1$ tearing modes on the plasma fluid rotation. Nucl. Fusion 46 (8), L1L5.
Lehnen, M., Bozhenkov, S. A., Abdullaev, S. S. & Jakubowski, M. W. 2008 Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions. Phys. Rev. Lett. 100, 255003.
Moser, J. 1962 On invariant curves of area preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen II Math. Phys. 1 (1), 120.
Mynick, H. E. & Strachan, J. D. 1981 Transport of runaway and thermal electrons due to magnetic microturbulence. Phys. Fluids 24 (4), 695702.
Myra, J. R. & Catto, P. J. 1992 Effect of drifts on the diffusion of runaway electrons in tokamak stochastic magnetic fields. Phys. Fluids B 4 (1), 176186.
Papp, G., Drevlak, M., Fülöp, T. & Helander, P. 2011a Runaway electron drift orbits in magnetostatic perturbed fields. Nucl. Fusion 51 (4), 043004.
Papp, G., Drevlak, M., Fülöp, T., Helander, P. & Pokol, G. I. 2011b Runaway electron losses caused by resonant magnetic perturbations in ITER. Plasma Phys. Control. Fusion 53 (9), 095004.
Papp, G., Drevlak, M., Fülöp, T. & Pokol, G. I. 2012 The effect of resonant magnetic perturbations on runaway electron transport in ITER. Plasma Phys. Control. Fusion 54 (12), 125008.
Papp, G., Fülöp, T., Fehér, T., de Vries, P. C., Riccardo, V., Reux, C., Lehnen, M., Kiptily, V., Plyusnin, V. V., Alper, B. & contributors, JET EFDA 2013 The effect of ITER-like wall on runaway electron generation in JET. Nucl. Fusion 53 (12), 123017.
Rechester, A. B. & Rosenbluth, M. N. 1978 Electron heat transport in a tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40 (1), 3841.
Shimada, M., Campbell, D. J., Mukhovatov, V., Fujiwara, M., Kirneva, N., Lackner, K., Nagami, M., Pustovitov, V. D., Uckan, N., Wesley, J., Asakura, N., Costley, A. E., Donne, A. J. H., Doyle, E. J., Fasoli, A., Gormezano, C., Gribov, Y., Gruber, O., Hender, T. C., Houlberg, W., Ide, S., Kamada, Y., Leonard, A., Lipschultz, B., Loarte, A., Miyamoto, K., Mukhovatov, V., Osborne, T. H., Polevoi, A. & Sips, A. C. C. 2007 Progress in the ITER physics basis chapter 1: overview and summary. Nucl. Fusion 47 (6), S1S17.
Smith, H. M., Fehér, T., Fülöp, T., Gál, K. & Verwichte, E. 2009 Runaway electron generation in tokamak disruptions. Plasma Phys. Control. Fusion 51 (12), 124008.
Suttrop, W., Eich, T., Fuchs, J. C., Günter, S., Janzer, A., Herrmann, A., Kallenbach, A., Lang, P. T., Lunt, T., Maraschek, M., McDermott, R. M., Mlynek, A., Pütterich, T., Rott, M., Vierle, T., Wolfrum, E., Yu, Q., Zammuto, I. & Zohm, H. 2011 First observation of edge localized modes mitigation with resonant and nonresonant magnetic perturbations in ASDEX Upgrade. Phys. Rev. Lett. 106, 225004.
Yoshino, R., Tokuda, S. & Kawano, Y. 1999 Generation and termination of runaway electrons at major disruptions in JT-60U. Nucl. Fusion 39 (2), 151161.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Energetic electron transport in the presence of magnetic perturbations in magnetically confined plasmas

  • G. Papp (a1) (a2), M. Drevlak (a2), G. I. Pokol (a3) and T. Fülöp (a4)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed