Skip to main content Accessibility help

Energetic electron generation by magnetic reconnection in laboratory laser-plasma interactions

  • Q.-L. DONG (a1) (a2), D.-W. YUAN (a2), S.-J. WANG (a2), Y. T. LI (a2), X. LIU (a2), S. E. JIANG (a3), Y. K. DING (a3), K. DU (a3), M.-Y. YU (a4) (a5), X.-T. HE (a4) (a6), Y. J. TANG (a3), J. Q. ZHU (a7), G. ZHAO (a8), Z.-M. SHENG (a2) (a9) and J. ZHANG (a2) (a9)...


The magnetic reconnection (MR) configuration was constructed by using two approaching laser-produced plasma bubbles. The characteristics of the MR current sheet were investigated. The driving energy of the laser pulse affects the type of the current sheet. The experiments present “Y-type” and “X-type” current sheets for larger and smaller driving energy, respectively. The energetic electrons were found to be well-collimated. The formation and ejection of plasmoid from the “Y-type” current sheet was expected to enhance the number of accelerated electrons.



Hide All
Brown, M. R., Cothran, C. D., Landreman, M., Schlossberg, D., Matthaeus, W. H., Qin, G., Lukin, V. S. and Gray, T. 2002 Energetic particles from three-dimensional magnetic reconnection events in the Swarthmore Spheromak Experiment. Phys. Plasmas 9, 20772084.
Chen, L. J., Bhattacharjee, A., Puhl-Quinn, P. A., Yang, H., Bessho, N., Imada, S., Muehlbachler, S., Daly, P. W., Lefebvre, B., Khotyaintsev, Y. et al. 2008 Observation of energetic electrons within magnetic islands. Nat Phys. 4, 1923.
Dong, Q. L., Wang, S. J., Lu, Q. M., Huang., C., Yuan, D. W., Liu, X., Lin, X. X., Li, Y. T., Wei, H. G., Zhong, J. Y. et al. 2012 Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction. Phys. Rev. Lett. 108, 215001.
Drake, J. F., Shay, M. A., Thongthai, W. and Swisdak, M. 2005 Production of energetic electrons during magnetic reconnection. Phys. Rev. Lett. 94, 095001.
Drake, J. F., Swisdak, M., Che, H. and Shay, M. A. 2006 Electron acceleration from contracting magnetic islands during reconnection. Nature 443, 553556.
Fox, W., Bhattacharjee, A. and Germaschewski, K. 2011 Fast magnetic reconnection in laser-produced plasma bubbles. Phys. Rev. Lett. 106, 215003.
Fu, X. R., Lu, Q. M. and Wang, S. 2006 The process of electron acceleration during collisionless magnetic reconnection. Phys. Plasmas 13, 012309.
Huang, C., Lu, Q. and Wang, S. 2010 The mechanisms of electron acceleration in antiparallel and guide field magnetic reconnection. Phys. Plasmas 17, 072306.
Karimabadi, H., Daughton, W. and Scudder, J. 2007 Multi-scale structure of the electron diffusion region. J. Geophys. Res. Lett. 34, L13104.
Li, C. K., Seguin, F. H., Frenje, J. A., Rygg, J. R., Petrasso, R. D., Town, R. P. J., Landen, O. L., Knauer, J. P. and Smalyuk, V. A. 2007 Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas. Phys. Rev. Lett. 99, 055001.
Lin, R. P. and Hudson, H. S. 1970 10-100 keV electron acceleration and emission from solar flares. Solar Physics 17, 412435.
Magee, R. M., Den Hartog, D. J., Kumar, S. T. A., Almagri, A. F., Chapman, B. E., Fiksel, G., Mirnov, V. V., Mezonlin, E. D. and Titus, J. B. 2011 Anisotropic ion heating and tail generation during tearing mode magnetic reconnection in a high-temperature plasma. Phys. Rev. Lett. 107, 065005.
Nilson, P. M., Willingale, L., Kaluza, M. C., Kamperidis, C., Minardi, S., Wei, M. S., Fernandes, P., Notley, M., Bandyopadhyay, S., Sherlock, M. et al. 2006 Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions. Phys. Rev. Lett. 97, 255001.
Øieroset, M., Lin, R. P., Phan, T. D., Larson, D. E. and Bale, S. D. 2002 Evidence for electron acceleration up to ~300 keV in the magnetic reconnection diffusion region of earth's magnetotail. Phys. Rev. Lett. 89, 195001.
Pritchett, P. L. and Coroniti, F. V. 2004 Three-dimensional collisionless magnetic reconnection in the presence of a guide field. J. Geophys. Res. 109, A01220.
Sakai, J., Saito, S., Mae, H., Farina, D., Lontano, M., Califano, F., Pegoraro, F. and Bulanov, S. V. 2002 Ion acceleration, magnetic field line reconnection, and multiple current filament coalescence of a relativistic electron beam in a plasma. Phys. Plasmas 9, 29592970.
Savrukhin, P. V. 2001 Generation of suprathermal electrons during magnetic reconnection at the sawtooth crash and disruption instability in the T-10 Tokamak. Phys. Rev. Lett. 86, 3036.
Shay, M. A., Drake, J. F. and Swisdak, M. 2007 Two-scale structure of the electron dissipation region during collisionless magnetic reconnection. Phys. Rev. Lett. 99, 155002.
Wang, R. S., Lu, Q. M., Huang, C. and Wang, S. 2010 Multispacecraft observation of electron pitch angle distributions in magnetotail reconnection. J. Geophys. Res. 115, A01209.
Yamada, M., Kulsrud, R. and Ji, H. T. 2010 Magnetic reconnection. Rev. Modern Phy. 82, 603.
Zhang, T. L., Lu, Q. M., Baumjohann, W., Russell, C. T., Fedorov, A., Barabash, S., Coates, A. J., Du, A. M., Cao, J. B.Nakamura, R. et al. , 2012 Magnetic reconnection in the near Venusian magnetotail. Sciences 336, 567.
Zhong, J., Li, Y. T., Wang, X. G., Wang, J. Q., Dong, Q. L., Xiao, C. J., Wang, S. J., Liu, X., Zhang, L., An, L. et al. 2010 Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers. Nat. Phys. 6, 984987.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed